
Graph Theory

Paths and Cycles

PATHS AND CYCLES …

 Walks, Trails and Paths

2

• A walk is a sequence of vertices and edges of a graph i.e. if we traverse a

graph then we get a walk. (Vertices and Edges can be repeated)

1 → 2 → 3 → 4 → 2 → 1 → 3 is a walk

PATHS AND CYCLES …

 Walks, Trails and Paths

3

• A Trail is a walk in which no edge is repeated then we get a trail. (Vertices

can be repeated but Edges can not be repeated)

1 → 3 → 8 → 6 → 3 → 2 is trail

1 → 3 → 8 → 6 → 3 → 2 → 1 is a closed trail

PATHS AND CYCLES …

 Walks, Trails and Paths

4

• A Circuit is the traversal of a graph such that not an edge is repeated but

vertex can be repeated and it is closed also i.e. it is a closed trail. (Vertices can

be repeated, Edges can not be repeated)

1 → 2 → 4 → 3 → 6 → 8 → 3 → 1 is a circuit

PATHS AND CYCLES …

 Walks, Trails and Paths

5

• A Path is a trail in which neither vertices nor edges are repeated i.e. if we

traverse a graph such that we do not repeat a vertex and nor we repeat an

edge. (Vertices can not be repeated, Edges can not be repeated).

6 → 8 → 3 → 1 → 2 → 4 is a Path

PATHS AND CYCLES …

 Walks, Trails and Paths

6

• A Cycle is the traversal of a graph such that we do not repeat a vertex nor

we repeat a edge but the starting and ending vertex must be same i.e. we

can repeat starting and ending vertex only then we get a cycle. (Vertices

can not be repeated, Edges can not be repeated) Cycle is a closed path.

1→2 → 4 → 3 → 1 is a cycle.

PATHS AND CYCLES …

 Walks, Trails and Paths

Walk

Vertices and Edges

can be repeated

PATHS AND CYCLES …

 Walks, Trails and Paths

Walk

Trail

Vertices and Edges

can be repeated

Vertices can be repeated but

Edges can not be repeated

PATHS AND CYCLES …

 Walks, Trails and Paths

9

Walk

Path

Trail

Vertices and Edges

can be repeated

Vertices can be repeated but

Edges can not be repeated

Vertices can not be repeated

Edges can not be repeated

PATHS AND CYCLES …

 Walks, Trails and Paths

10

Walk

Circuit

Trail

Vertices and Edges

can be repeated

Vertices can be repeated but

Edges can not be repeated

Vertices can be repeated,

Edges can not be repeated

Path

Vertices can not be repeated

Edges can not be repeated

PATHS AND CYCLES …

 Walks, Trails and Paths

11

Walk

Cycle

CircuitPath

Trail

Vertices and Edges

can be repeated

Vertices can be repeated but

Edges can not be repeated

Vertices can be repeated,

Edges can not be repeated
Vertices can not be repeated

Edges can not be repeated

Vertices can not be repeated

Edges can not be repeated

PATHS AND CYCLES …

 Walks, Trails and Paths

12

• APPLICATION: Prove that if two vertices 𝑣, 𝑤 are connected with a walk,

then they are connected with a path.

PATHS AND CYCLES …

 Walks, Trails and Paths

13

• APPLICATION: Prove that if two vertices 𝑣, 𝑤 are connected with a walk,

then they are connected with a path.

o Let 𝑣,… , 𝑢, … , 𝑢, … , 𝑤, and let a vertex 𝑢 that appears two or

more times.

PATHS AND CYCLES …

 Walks, Trails and Paths

14

• APPLICATION: Prove that if two vertices 𝑣, 𝑤 are connected with a walk,

then they are connected with a path.

o Let 𝑣,… , 𝑢, … , 𝑢, … , 𝑤, and let a vertex 𝑢 that appears two or

more times.

o Removing from the walk the vertices that appear between the first and

the last appearance of vertex 𝑢 (including the last appearance of 𝑢) it

results to a walk where u appears only once.

PATHS AND CYCLES …

 Walks, Trails and Paths

15

• APPLICATION: Prove that if two vertices 𝑣, 𝑤 are connected with a walk,

then they are connected with a path.

o Let 𝑣,… , 𝑢, … , 𝑢, … , 𝑤, and let a vertex 𝑢 that appears two or

more times.

o Removing from the walk the vertices that appear between the first and

the last appearance of vertex 𝑢 (including the last appearance of 𝑢) it

results to a walk where u appears only once.

o Iterate over all vertices with multiple instances on the walk.

PATHS AND CYCLES …

 Walks, Trails and Paths

16

• The length of a walk/trail/path equals the cardinality of the included edges.

𝑢1

𝑢6

𝑢7

𝑢5𝑢4

𝑢2

𝑢3

PATHS AND CYCLES …

 Walks, Trails and Paths

17

• The length of a walk/trail/path equals the cardinality of the included edges.

𝑢1

𝑢6

𝑢7

𝑢5𝑢4

𝑢2

𝑢3

𝐴1 = (𝑣3, 𝑣4, 𝑣5, 𝑣7, 𝑣2, 𝑣4, 𝑣5, 𝑣2, 𝑣1)

PATHS AND CYCLES …

 Walks, Trails and Paths

18

• The length of a walk/trail/path equals the cardinality of the included edges.

𝐴1 = 𝑣3, 𝑣4, 𝑣5, 𝑣7, 𝑣2, 𝑣4, 𝑣5, 𝑣2, 𝑣1
𝐴2 = 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7, 𝑣5, 𝑣4, 𝑣2, 𝑣1

𝑢1

𝑢6

𝑢7

𝑢5𝑢4

𝑢2

𝑢3

PATHS AND CYCLES …

 Walks, Trails and Paths

19

𝑢1

𝑢6

𝑢7

𝑢5𝑢4

𝑢2

𝑢3

• The length of a walk/trail/path equals the cardinality of the included edges.

𝐴1 = 𝑣3, 𝑣4, 𝑣5, 𝑣7, 𝑣2, 𝑣4, 𝑣5, 𝑣2, 𝑣1
𝐴2 = 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7, 𝑣5, 𝑣4, 𝑣2, 𝑣1
𝐴3 = 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7, 𝑣5, 𝑣2, 𝑣1

PATHS AND CYCLES …

 Walks, Trails and Paths

20

• The length of a walk/trail/path equals the cardinality of the included edges.

𝐴1 = 𝑣3, 𝑣4, 𝑣5, 𝑣7, 𝑣2, 𝑣4, 𝑣5, 𝑣2, 𝑣1
𝐴2 = 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7, 𝑣5, 𝑣4, 𝑣2, 𝑣1
𝐴3= 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7, 𝑣5, 𝑣2, 𝑣1
𝐴4= 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7, 𝑣2, 𝑣1

𝑢1

𝑢6

𝑢7

𝑢5𝑢4

𝑢2

𝑢3

PATHS AND CYCLES …

 Distances

21

• The length of a walk/trail/path equals the cardinality of the included edges.

• Edge Disjoint Paths:

PATHS AND CYCLES …

 Distances

22

• The length of a walk/trail/path equals the cardinality of the included edges.

• Distance between two vertices:

The length of a shortest path from 𝑢 to 𝑣.

o Non-negative: 𝑑𝑖𝑠𝑡(𝑣, 𝑢) > 0 for 𝑣 ≠ 𝑢 (𝑑𝑖𝑠𝑡(𝑣, 𝑢) = 0, 𝑖𝑓 𝑣 = 𝑢)

o Symmetrical: 𝑑𝑖𝑠𝑡(𝑣, 𝑢) = 𝑑𝑖𝑠𝑡(𝑢, 𝑣)

o Triangle Inequality: 𝑑𝑖𝑠𝑡 𝑣, 𝑢 + 𝑑𝑖𝑠𝑡 𝑢,𝑤 ≥ 𝑑𝑖𝑠𝑡(𝑣, 𝑤)

PATHS AND CYCLES …

 Distances

23

Compute Distances

between vertices of

simple graphs

(Moore, 1959)

PATHS AND CYCLES …

 Distances

24

Compute Distances

between vertices of

weighted graphs

(Dijkstra, 1959)

PATHS AND CYCLES …

 Distances

25

• Eccentricity is the maximum distance from vertex 𝑣 to any other vertex

𝑢 of the graph. → 𝑒 𝑣 = max 𝑑 𝑣, 𝑢 𝑢 ∈ 𝑉(𝐺)}

• Radius of a graph 𝐺, radius(G) is the minimum eccentricity exhibited

across the vertices of 𝐺. → 𝑟𝑎𝑑𝑖𝑢𝑠 𝐺 = min 𝑒 𝑣 𝑣 ∈ 𝑉(𝐺)}

• Diameter of a graph 𝐺 , is the maximum eccentricity exhibited

across the vertices of 𝐺 G. → 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝐺 = max 𝑒 𝑣 𝑣 ∈ 𝑉(𝐺)}

PATHS AND CYCLES …

 Distances

26

𝒓𝒂𝒅𝒊𝒖𝒔 𝑮 ≤ 𝒅𝒊𝒂𝒎𝒆𝒕𝒆𝒓 𝑮 ≤ 𝟐 ⋅ 𝒓𝒂𝒅𝒊𝒖𝒔(𝑮)

• Eccentricity is the maximum distance from vertex 𝑣 to any other vertex

𝑢 of the graph. → 𝑒 𝑣 = max 𝑑 𝑣, 𝑢 𝑢 ∈ 𝑉(𝐺)}

• Radius of a graph 𝐺, radius(G) is the minimum eccentricity exhibited

across the vertices of 𝐺. → 𝑟𝑎𝑑𝑖𝑢𝑠 𝐺 = min 𝑒 𝑣 𝑣 ∈ 𝑉(𝐺)}

• Diameter of a graph 𝐺 , is the maximum eccentricity exhibited

across the vertices of 𝐺 G. → 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝐺 = max 𝑒 𝑣 𝑣 ∈ 𝑉(𝐺)}

PATHS AND CYCLES …

 Distances

27

?

𝒓𝒂𝒅𝒊𝒖𝒔 𝑮 ≤ 𝒅𝒊𝒂𝒎𝒆𝒕𝒆𝒓 𝑮 ≤ 𝟐 ⋅ 𝒓𝒂𝒅𝒊𝒖𝒔(𝑮)

• Eccentricity is the maximum distance from vertex 𝑣 to any other vertex

𝑢 of the graph. → 𝑒 𝑣 = max 𝑑 𝑣, 𝑢 𝑢 ∈ 𝑉(𝐺)}

• Radius of a graph 𝐺, radius(G) is the minimum eccentricity exhibited

across the vertices of 𝐺. → 𝑟𝑎𝑑𝑖𝑢𝑠 𝐺 = min 𝑒 𝑣 𝑣 ∈ 𝑉(𝐺)}

• Diameter of a graph 𝐺 , is the maximum eccentricity exhibited

across the vertices of 𝐺 G. → 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝐺 = max 𝑒 𝑣 𝑣 ∈ 𝑉(𝐺)}

PATHS AND CYCLES …

 Distances

28

?

𝒓𝒂𝒅𝒊𝒖𝒔 𝑮 ≤ 𝒅𝒊𝒂𝒎𝒆𝒕𝒆𝒓 𝑮 ≤ 𝟐 ⋅ 𝒓𝒂𝒅𝒊𝒖𝒔(𝑮)

• Eccentricity is the maximum distance from vertex 𝑣 to any other vertex

𝑢 of the graph. → 𝑒 𝑣 = max 𝑑 𝑣, 𝑢 𝑢 ∈ 𝑉(𝐺)}

• Radius of a graph 𝐺, radius(G) is the minimum eccentricity exhibited

across the vertices of 𝐺. → 𝑟𝑎𝑑𝑖𝑢𝑠 𝐺 = min 𝑒 𝑣 𝑣 ∈ 𝑉(𝐺)}

• Diameter of a graph 𝐺 , is the maximum eccentricity exhibited

across the vertices of 𝐺 G. → 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝐺 = max 𝑒 𝑣 𝑣 ∈ 𝑉(𝐺)}

PATHS AND CYCLES …

 Distances

29

𝒓𝒂𝒅𝒊𝒖𝒔 𝑮 ≤ 𝒅𝒊𝒂𝒎𝒆𝒕𝒆𝒓 𝑮 ≤ 𝟐 ⋅ 𝒓𝒂𝒅𝒊𝒖𝒔(𝑮)

• Eccentricity is the maximum distance from vertex 𝑣 to any other vertex

𝑢 of the graph. → 𝑒 𝑣 = max 𝑑 𝑣, 𝑢 𝑢 ∈ 𝑉(𝐺)}

• Radius of a graph 𝐺, radius(G) is the minimum eccentricity exhibited

across the vertices of 𝐺. → 𝑟𝑎𝑑𝑖𝑢𝑠 𝐺 = min 𝑒 𝑣 𝑣 ∈ 𝑉(𝐺)}

• Diameter of a graph 𝐺 , is the maximum eccentricity exhibited

across the vertices of 𝐺 G. → 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝐺 = max 𝑒 𝑣 𝑣 ∈ 𝑉(𝐺)}

PATHS AND CYCLES …

 Distances

30

𝒓𝒂𝒅𝒊𝒖𝒔 𝑮 ≤ 𝒅𝒊𝒂𝒎𝒆𝒕𝒆𝒓 𝑮 ≤ 𝟐 ⋅ 𝒓𝒂𝒅𝒊𝒖𝒔(𝑮)

• Eccentricity is the maximum distance from vertex 𝑣 to any other vertex

𝑢 of the graph. → 𝑒 𝑣 = max 𝑑 𝑣, 𝑢 𝑢 ∈ 𝑉(𝐺)}

• Radius of a graph 𝐺, radius(G) is the minimum eccentricity exhibited

across the vertices of 𝐺. → 𝑟𝑎𝑑𝑖𝑢𝑠 𝐺 = min 𝑒 𝑣 𝑣 ∈ 𝑉(𝐺)}

• Diameter of a graph 𝐺 , is the maximum eccentricity exhibited

across the vertices of 𝐺 G. → 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝐺 = max 𝑒 𝑣 𝑣 ∈ 𝑉(𝐺)}

PATHS AND CYCLES …

 Distances

31

• APPLICATION:

Prove that in each graph it holds that: 𝒓𝒂𝒅𝒊𝒖𝒔(𝑮)≤𝒅𝒊𝒂𝒎𝒆𝒕𝒆𝒓(𝑮)≤𝟐⋅𝒓𝒂𝒅𝒊𝒖𝒔(𝑮)

PATHS AND CYCLES …

 Distances

32

• APPLICATION:

Prove that in each graph it holds that: 𝒓𝒂𝒅𝒊𝒖𝒔(𝑮)≤𝒅𝒊𝒂𝒎𝒆𝒕𝒆𝒓(𝑮)≤𝟐⋅𝒓𝒂𝒅𝒊𝒖𝒔(𝑮)

o By definition it holds that the left part is truth.

PATHS AND CYCLES …

 Distances

33

• APPLICATION:

Prove that in each graph it holds that: 𝒓𝒂𝒅𝒊𝒖𝒔(𝑮)≤𝒅𝒊𝒂𝒎𝒆𝒕𝒆𝒓(𝑮)≤𝟐⋅𝒓𝒂𝒅𝒊𝒖𝒔(𝑮)

o By definition it holds that the left part is truth.

o For the right part, we assume that

 there exist two vertices 𝑥, 𝑦: 𝑑𝑖𝑠𝑡(𝑥, 𝑦) = 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟(𝐺)

 Let 𝑧 a vertex: the largest shortest path from 𝑧 has length equal the

radius of 𝐺 → 𝑒(𝑧) = 𝑟𝑎𝑑𝑖𝑢𝑠(𝐺)

PATHS AND CYCLES …

 Distances

34

• APPLICATION:

Prove that in each graph it holds that: 𝒓𝒂𝒅𝒊𝒖𝒔(𝑮)≤𝒅𝒊𝒂𝒎𝒆𝒕𝒆𝒓(𝑮)≤𝟐⋅𝒓𝒂𝒅𝒊𝒖𝒔(𝑮)

o By definition it holds that the left part is truth.

o For the right part, we assume that

 there exist two vertices 𝑥, 𝑦: 𝑑𝑖𝑠𝑡(𝑥, 𝑦) = 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟(𝐺)

 Let 𝑧 a vertex: the largest shortest path from 𝑧 has length equal the

radius of 𝐺 → 𝑒(𝑧) = 𝑟𝑎𝑑𝑖𝑢𝑠(𝐺)

 From the Triangle Inequality it holds that:

𝒅𝒊𝒂𝒎𝒆𝒕𝒆𝒓 𝑮 = 𝒅𝒊𝒔𝒕 𝒙, 𝒚 ≤ 𝒅𝒊𝒔𝒕 𝒙, 𝒛 + 𝒅𝒊𝒔𝒕 𝒛, 𝒚 ≤ 𝒆 𝒛 + 𝒆 𝒛 = 𝟐 ⋅ 𝒓𝒂𝒅𝒊𝒖𝒔(𝑮)

PATHS AND CYCLES …

 Graph Center and Graph Median

35

• The subgraph of a graph 𝐺 induced by the vertices of 𝐺 with the minimum

eccentricity is called Center of graph G (denoted as center(𝐺)).

PATHS AND CYCLES …

 Graph Center and Graph Median

36

• The subgraph of a graph 𝐺 induced by the vertices of 𝐺 with the minimum

eccentricity is called Center of graph G (denoted as center(𝐺)).

PATHS AND CYCLES …

 Graph Center and Graph Median

37

• The subgraph of a graph 𝐺 induced by the vertices of 𝐺 with the minimum

eccentricity is called Center of graph G (denoted as center(𝐺)).

PATHS AND CYCLES …

 Graph Center and Graph Median

38

• Theorem: Each graph 𝐺 is the center of a connected graph 𝐻.

PATHS AND CYCLES …

 Graph Center and Graph Median

39

• Theorem: Each graph 𝐺 is the center of a connected graph 𝐻.

PATHS AND CYCLES …

 Graph Center and Graph Median

40

• Theorem: Each graph 𝐺 is the center of a connected graph 𝐻.

1. Construct the hyper-graph 𝐻 …

2. Vertices 𝑣1, 𝑣2 are connected to all the vertices of 𝐻
while 𝑢1, 𝑢2 are connected to 𝑣1, 𝑣2.

3. In hyper-graph 𝐻 it holds that 𝑒 𝑣 = 2 ∀ 𝑣 ∈ 𝐸(𝐺),
while it holds that 𝑒(𝑣1) = 𝑒(𝑣2) = 3 and 𝑒(𝑢1) = 𝑒(𝑢2) = 4,

hence the graph 𝐺 consists the center of graph 𝐻.

PATHS AND CYCLES …

 Graph Center and Graph Median

41

• Theorem: Each graph 𝐺 is the center of a connected graph 𝐻.

1. Construct the hyper-graph 𝐻 …

2. Vertices 𝑣1, 𝑣2 are connected to all the vertices of 𝐻
while 𝑢1, 𝑢2 are connected to 𝑣1, 𝑣2.

3. In hyper-graph 𝐻 it holds that 𝑒 𝑣 = 2 ∀ 𝑣 ∈ 𝐸(𝐺),
while it holds that 𝑒(𝑣1) = 𝑒(𝑣2) = 3 and 𝑒(𝑢1) = 𝑒(𝑢2) = 4,

hence the graph 𝐺 consists the center of graph 𝐻.

PATHS AND CYCLES …

 Graph Center and Graph Median

42

• Theorem: Each graph 𝐺 is the center of a connected graph 𝐻.

1. Construct the hyper-graph 𝐻 …

2. Vertices 𝑣1, 𝑣2 are connected to all the vertices of 𝐻
while 𝑢1, 𝑢2 are connected to 𝑣1, 𝑣2.

3. In hyper-graph 𝐻 it holds that 𝑒 𝑣 = 2 ∀ 𝑣 ∈ 𝐸(𝐺),
while it holds that 𝑒(𝑣1) = 𝑒(𝑣2) = 3 and 𝑒(𝑢1) = 𝑒(𝑢2) = 4,

hence the graph 𝐺 consists the center of graph 𝐻.

PATHS AND CYCLES …

 Graph Center and Graph Median

43

• Vertex Distance is defined as the sum of the distances between a specific

vertex and all the vertices of the graph.

𝑑𝑖𝑠𝑡 𝑣 =

𝑢∈𝑉(𝐺)

𝑑𝑖𝑠𝑡(𝑣, 𝑢)

PATHS AND CYCLES …

 Graph Center and Graph Median

44

• Vertex Distance is defined as the sum of the distances between a specific

vertex and all the vertices of the graph.

𝑑𝑖𝑠𝑡 𝑣 =

𝑢∈𝑉(𝐺)

𝑑𝑖𝑠𝑡(𝑣, 𝑢)

PATHS AND CYCLES …

 Graph Center and Graph Median

45

• Vertex Distance is defined as the sum of the distances between a specific

vertex and all the vertices of the graph.

𝑑𝑖𝑠𝑡 𝑣 =

𝑢∈𝑉(𝐺)

𝑑𝑖𝑠𝑡(𝑣, 𝑢)

PATHS AND CYCLES …

 Graph Center and Graph Median

46

• Vertex Distance is defined as the sum of the distances between a specific

vertex and all the vertices of the graph.

𝑑𝑖𝑠𝑡 𝑣 =

𝑢∈𝑉(𝐺)

𝑑𝑖𝑠𝑡(𝑣, 𝑢)

PATHS AND CYCLES …

 Graph Center and Graph Median

47

• Vertex Distance is defined as the sum of the distances between a specific

vertex and all the vertices of the graph.

𝑑𝑖𝑠𝑡 𝑣 =

𝑢∈𝑉(𝐺)

𝑑𝑖𝑠𝑡(𝑣, 𝑢)

PATHS AND CYCLES …

 Graph Center and Graph Median

48

• Vertex Distance is defined as the sum of the distances between a specific

vertex and all the vertices of the graph.

𝑑𝑖𝑠𝑡 𝑣 =

𝑢∈𝑉(𝐺)

𝑑𝑖𝑠𝑡(𝑣, 𝑢)

PATHS AND CYCLES …

 Graph Center and Graph Median

49

• Vertex Distance is defined as the sum of the distances between a specific

vertex and all the vertices of the graph.

𝑑𝑖𝑠𝑡 𝑣 =

𝑢∈𝑉(𝐺)

𝑑𝑖𝑠𝑡(𝑣, 𝑢)

PATHS AND CYCLES …

 Diameter of a Graph

50

Algorithm Center Computation

Input: Matrix D (Floyd) with the Distances of the vertices of a graph 𝐺

Output: The Center of the graph 𝐺.

1. For i=1:1:n

2. dist(i)← 𝟎
3. For j=1:1:n

4. if (i ≠ j AND D(i,j) >dist(i))

5. dist(i) ← D(i,j)

6. Center ← 1

7. For i=1:1:n

8. if(dist(i)<dist(Center))

9. Center ← 𝒊

PATHS AND CYCLES …

 Graph Center and Graph Median

51

• The subgraph of a graph 𝐺 induced by the vertices of 𝐺 with the minimum

distance is called Median of graph 𝐺 (denoted as median(𝐺)).

PATHS AND CYCLES …

 Graph Center and Graph Median

52

Algorithm Median Computation

Input: Matrix D (Floyd) with the Distances of the vertices of a graph 𝐺

Output: The Median of the graph 𝐺.

1. For i=1:1:n

2. sum(i)← 𝟎
3. For j=1:1:n

4. if (i ≠ j)

5. sum(i) ← sum(i) + D(i,j)

6. M𝐞𝐝𝐢𝐚𝐧 ← 1

7. For i=1:1:n

8. if(sum(i)<sum(Median))

9. Median ← 𝒊

PATHS AND CYCLES …

 Graph Center and Graph Median

53

• The Median and the Center of a graph 𝐺 are not always the same.

PATHS AND CYCLES …

 Graph Center and Graph Median

54

• The Median and the Center of a graph 𝐺 are not always the same.

PATHS AND CYCLES …

 Graph Center and Graph Median

55

• The Median and the Center of a graph 𝐺 are not always the same.

PATHS AND CYCLES …

 Graph Center and Graph Median

56

• The Median and the Center of a graph 𝐺 are not always the same.

Center

Median

PATHS AND CYCLES …

 Diameter of a Graph

57

• The Diameter of a graph is defined to be the longest shortest path

exhibited across all possible pairs of vertices.

Algorithm Diameter Computation

Input: A graph 𝐺 = (𝑉, 𝐸) with vertices 1,2, … , 𝑛

Output: The value of the Diameter of the Graph.

1. Set MaxLength ← 𝟎
2. For i=1:1:n

3. dist(i) ← ∞ and flag(i) ← false

4. For i=1:1:n

5. temp ← 0 , dist(i) ← ∞ and flag(i) ← true

6. Enqueue(Q,i)

7. while Q ≠ isnull();

8. u ← Dequeue(Q)

9. ∀ 𝒖, 𝒗 ∈ 𝑬 𝑮
10. if flag(v)=false

11. flag(v) ← true and dist(v) ← dist(u)+1

12. if dist(v) > temp

13. temp ← dist(v)

14. Enqueue(Q,v)

15. if MaxLenth < temp

16. MaxLength ← temp

PATHS AND CYCLES …

 Centrality

58

• In applications of Graph Theory, the term Centrality identify the most

important vertices within a graph.

• Centrality indices are answers to the question "What characterizes an

important vertex?“, while the word "importance" has a wide number of

meanings, leading to many different definitions of centrality.

• Regarding the criteria deployed to measure centrality, it can be categorized to

the following types:

1. Degree Centrality

2. Closeness Centrality

3. Betweeness Centrality

PATHS AND CYCLES …

 Centrality

59

• The term of Degree Centrality is defined as the number of links incident

upon a node (i.e., the number of ties that a node has).

• The degree can be interpreted in terms of the immediate risk of a node for

catching whatever is flowing through the network (such as a virus, or some

information).

PATHS AND CYCLES …

 Centrality

60

• The term of Degree Centrality is defined as the number of links incident

upon a node (i.e., the number of ties that a node has).

• The degree can be interpreted in terms of the immediate risk of a node for

catching whatever is flowing through the network (such as a virus, or some

information).

• The Degree Centrality of a vertex 𝑣, for a given graph 𝐺 = (𝑉, 𝐸) with

|𝑉| vertices and |𝐸| edges, is defined as:

𝐶𝐷(𝑣) = deg(𝑣)

PATHS AND CYCLES …

 Centrality

61

• In a connected graph, the normalized Closeness Centrality of a

node is the average length of the shortest path between the node and all

other nodes in the graph.

• The more central a node is, the closer it is to all other nodes.

PATHS AND CYCLES …

 Centrality

62

• In a connected graph, the normalized Closeness Centrality of a

node is the average length of the shortest path between the node and all

other nodes in the graph.

• The more central a node is, the closer it is to all other nodes.

• Closeness Centrality is computed as:

𝐶 𝑥 =
1

 𝑦 𝑑 𝑦, 𝑥

where d(y,x) is the distance between vertices x and y.

• In order to adjust the formula to compare graphs of different sizes, the

normalized form is computed, given by the previous formula multiplied by

N-1, where N is the number of nodes in the graph.

PATHS AND CYCLES …

 Centrality

63

• In a connected graph, the normalized Closeness Centrality of a

node is the average length of the shortest path between the node and all

other nodes in the graph.

• The more central a node is, the closer it is to all other nodes.

• Closeness Centrality is computed as:

𝐶 𝑥 =
1

 𝑦 𝑑 𝑦, 𝑥

where d(y,x) is the distance between vertices x and y.

• Taking distances from or to all other nodes is irrelevant in undirected

graphs, whereas it can produce totally different results in directed graphs.

PATHS AND CYCLES …

 Centrality

64

• The term Betweenness Centrality quantifies the number of times a node

acts as a bridge along the shortest path between two other nodes.

PATHS AND CYCLES …

 Centrality

65

• The term Betweenness Centrality quantifies the number of times a node

acts as a bridge along the shortest path between two other nodes.

• Under this concept, vertices that have a high probability to occur on a

randomly chosen shortest path between two randomly chosen vertices have

a high betweenness.

PATHS AND CYCLES …

 Centrality

66

• The term Betweenness Centrality quantifies the number of times a node

acts as a bridge along the shortest path between two other nodes.

• Under this concept, vertices that have a high probability to occur on a

randomly chosen shortest path between two randomly chosen vertices have

a high betweenness.

• The Betweenness Centrality of a vertex v in a graph G=(V,E) with V

vertices is computed as follows:

1. For each pair of vertices (s,t), compute the shortest paths between them.

2. For each pair of vertices (s,t), determine the fraction of shortest paths

that pass through the vertex in question (here, vertex v).

3. Sum this fraction over all pairs of vertices (s,t).

PATHS AND CYCLES …

 Centrality

67

• The term Betweenness Centrality quantifies the number of times a node

acts as a bridge along the shortest path between two other nodes.

• More compactly the betweenness can be represented as

𝐶𝐵 𝑣 =

𝑠≠𝑣≠𝑡∈𝑉

𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡

• where 𝜎𝑠𝑡 is total number of shortest paths from node 𝑠 to node 𝑡 and

𝜎𝑠𝑡(𝑣) is the number of those paths that pass through 𝑣.

• The betweenness may be normalised by dividing through the number of

pairs of vertices not including 𝑣, which:

o for directed graphs is (𝑛 − 1)(𝑛 − 2)}(𝑛 − 1)(𝑛 − 2) and

o for undirected graphs is (𝑛 − 1)(𝑛 − 2)/2}(𝑛 − 1)(𝑛 − 2)/2.

PATHS AND CYCLES …

 Centrality

68

• The term Betweenness Centrality quantifies the number of times a node

acts as a bridge along the shortest path between two other nodes.

• More compactly the betweenness can be represented as

𝐶𝐵 𝑣 =

𝑠≠𝑣≠𝑡∈𝑉

𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡

• where 𝜎𝑠𝑡 is total number of shortest paths from node 𝑠 to node 𝑡 and

𝜎𝑠𝑡(𝑣) is the number of those paths that pass through 𝑣.

• For example, in an undirected star graph, the center vertex (which is

contained in every possible shortest path) would have a betweenness of

(𝑛 − 1)(𝑛 − 2)/2}(𝑛 − 1)(𝑛 − 2)/2 (1, if normalised) while the leaves

(which are contained in no shortest paths) would have a betweenness of 0.

PATHS AND CYCLES …

 Eulerian Graphs

69

• The Seven Bridges of Königsberg is a historically notable problem in

mathematics. Its negative resolution by Leonhard Euler in 1736 laid the

foundations of graph theory and prefigured the idea of topology.

PATHS AND CYCLES …

 Eulerian Graphs

70

• The city of Königsberg in Prussia (now Kaliningrad, Russia) was set on

both sides of the Pregel River, and included two large islands - Kneiphof

and Lomse - which were connected to each other, or to the two mainland

portions of the city, by seven bridges.

• The problem was to devise a walk through the city that would cross

each of those bridges once and only once.

PATHS AND CYCLES …

 Eulerian Graphs

71

• By way of specifying the logical task unambiguously, explicitly unacceptable

solutions involved either:

a) reaching an island/mainland bank other than via one of the bridges, or

b) accessing any bridge without crossing to its other end are.

PATHS AND CYCLES …

 Eulerian Graphs

72

• Euler proved that the problem has no solution. The difficulty he faced was

the development of a suitable technique of analysis, and of subsequent tests

that established this assertion with mathematical rigor.

PATHS AND CYCLES …

 Eulerian Graphs

73

• First, Euler pointed out that the choice of route inside each land mass is

irrelevant.

• The only important feature of a route is the sequence of bridges crossed.

• This allowed him to reformulate the problem in abstract terms (laying the

foundations of graph theory), eliminating all features except the list of land

masses and the bridges connecting them.

PATHS AND CYCLES …

 Eulerian Graphs

74

• First, Euler pointed out that the choice of route inside each land mass is

irrelevant.

• The only important feature of a route is the sequence of bridges crossed.

• This allowed him to reformulate the problem in abstract terms (laying the

foundations of graph theory), eliminating all features except the list of land

masses and the bridges connecting them.

He replaced …

each land mass with an abstract "vertex" or node, and

each bridge with an abstract connection, an "edge", which

only serves to record which pair of vertices is connected by that bridge.

PATHS AND CYCLES …

 Eulerian Graphs

75

• First, Euler pointed out that the choice of route inside each land mass is

irrelevant.

• The only important feature of a route is the sequence of bridges crossed.

• This allowed him to reformulate the problem in abstract terms (laying the

foundations of graph theory), eliminating all features except the list of land

masses and the bridges connecting them.

PATHS AND CYCLES …

 Eulerian Graphs

76

• Next, Euler observed that (except at the endpoints of the walk), whenever

one enters a vertex by a bridge, one leaves the vertex by a bridge.

o During any walk in the graph, the number of times one enters a non-

terminal vertex equals the number of times one leaves it.

o If every bridge has been traversed exactly once, it follows that, for each

land mass (except start/finish), the number of bridges touching that land

mass must be even (half "toward" and half "away" from the landmass).

o All four of the land masses in the original problem are touched by an odd

number of bridges (one is touched by 5 bridges, and each of the other

three is touched by 3).

o Since, at most, two land masses can serve as the endpoints of a walk, the

proposition of a walk traversing each bridge once leads to a contradiction.

PATHS AND CYCLES …

 Eulerian Graphs

77

• Is it possible in a graph to find a closed trace (circuit) crossing all the edges

of the graph, exactly one time?

• Theorem - Eulerian Graph: Include closed trace (circuit)

o A graph G is Eulerian iff it includes exactly 0 vertices of odd degree.

• Theorem - Semi-Eulerian Graphs: Include open trace (path)

o A graph G is Semi-Eulerian iff it include exactly 2 vertices of odd degree.

 How can it be effectively checked if a graph is Eulerian?

PATHS AND CYCLES …

 Eulerian Graphs

78

• Is it possible in a graph to find a closed trace (circuit) crossing all the edges

of the graph, exactly one time?

• Theorem - Eulerian Graph: Include closed trace (circuit)

o A graph G is Eulerian iff it includes exactly 0 vertices of odd degree.

• Theorem - Semi-Eulerian Graphs: Include open trace (path)

o A graph G is Semi-Eulerian iff it include exactly 2 vertices of odd degree.

 How can it be effectively checked if a graph is Eulerian?

 Deploying DFS and the Theorem

 In linear time 𝑂(𝑛 +𝑚)

PATHS AND CYCLES …

 Eulerian Graphs

79

• Is it possible in a graph to find a closed trace (circuit) crossing all the edges

of the graph, exactly one time?

• Theorem - Eulerian Graph: Include closed trace (circuit)

o A graph G is Eulerian iff it includes exactly 0 vertices of odd degree.

• Theorem - Semi-Eulerian Graphs: Include open trace (path)

o A graph G is Semi-Eulerian iff it include exactly 2 vertices of odd degree.

 Theorem: A simple connected graph G=(V,E) is Eulerian iff each of its

edges belongs to an odd number of cycles.

PATHS AND CYCLES …

 Eulerian Graphs

80

• Theorem: A simple connected graph 𝐺 is Eulerian (resp., Semi-Eulerian)

iff it includes exactly 0 (resp., exactly 2) vertices of odd degree.

Proof.

Necessity of Condition:

If there exists Eulerian Circuit (resp., open trace), then 𝐺 should be

connected and the number of odd-degree vertices should be 0 (resp., 2).

Sufficiency of Condition: (Inductively on the number of edges)

a) If |𝐸| = 2, the truth is obvious. Let the proposition is truth for

|𝐸| > 2. Let us assume that graph 𝐺contains two vertices of odd

degree (let, 𝑣1, 𝑣2). Let as assume a walk from vertex 𝑣𝑖 (𝑣1 if

there exist odd-degree vertices). Let the walk 𝑊 cross various vertices

until it reaches vertex 𝑣𝑗, without omitting the corresponding edges.

If the graph 𝐺 does not contain odd-degree edges, then 𝑣𝑗=𝑣𝑖 ,

else 𝑣𝑗 = 𝑣2.

PATHS AND CYCLES …

 Eulerian Graphs

81

• Theorem: A simple connected graph 𝐺 is Eulerian (resp., Semi-Eulerian)

iff it includes exactly 0 (resp., exactly 2) vertices of odd degree.

Proof.

Necessity of Condition:

If there exists Eulerian Circuit (resp., open trace), then 𝐺 should be

connected and the number of odd-degree vertices should be 0 (resp., 2).

Sufficiency of Condition: (Inductively on the number of edges)

b) However, it is not obvious if the walk 𝑊 has crossed through all the

vertices. If so, there exist edges that have not been utilized.

1. If we remove the rest of the utilized edge, then a subgraph 𝐺’

results, that is not necessarily connected.

2. The graph 𝐺’ should contain only even-degree vertices.

PATHS AND CYCLES …

 Eulerian Graphs

82

• Theorem: A simple connected graph 𝐺 is Eulerian (resp., Semi-Eulerian)

iff it includes exactly 0 (resp., exactly 2) vertices of odd degree.

Proof.

Necessity of Condition:

If there exists Eulerian Circuit (resp., open trace), then 𝐺 should be

connected and the number of odd-degree vertices should be 0 (resp., 2).

Sufficiency of Condition: (Inductively on the number of edges)

b) However, it is not obvious if the walk 𝑊 has crossed through all the

vertices. If so, there exist edges that have not been utilized.

3. According to the assumption of the induction, each component of

𝐺’ contains an Eulerian circuit. Since graph 𝐺 is connected, then

the walk should pass from at least one vertex of each component

of 𝐺’.

PATHS AND CYCLES …

 Eulerian Graphs

83

• Theorem: A simple connected graph 𝐺 is Eulerian (resp., Semi-Eulerian)

iff it includes exactly 0 (resp., exactly 2) vertices of odd degree.

Proof.

Necessity of Condition:

If there exists Eulerian Circuit (resp., open trace), then 𝐺 should be

connected and the number of odd-degree vertices should be 0 (resp., 2).

Sufficiency of Condition: (Inductively on the number of edges)

b) However, it is not obvious if the walk 𝑊 has crossed through all the

vertices. If so, there exist edges that have not been utilized.

4. It can be constructed an Eulerian circuit (or open trace) for the

graph 𝐺 by introducing the Eulerian circuits of the components of

the subgraph 𝐺’ to the walk 𝑊.

PATHS AND CYCLES …

 Eulerian Graphs

84

• Theorem : A simple connected graph 𝐺 is Eulerian (resp., Semi-Eulerian)

iff it includes exactly 0 (resp., exactly 2) vertices of odd degree.

Proof.of the Sufficiency of Condition: (Inductively on the number of edges)

PATHS AND CYCLES …

 Discovering Eulerian Circuits in Graphs

85

• Let us assume that we follow a naive approach of discovering an Eulerian

circuit in a given graph,

o starting from an arbitrary vertex and

o proceeding over the edges that have not been examined yet.

• … such an approach does not guarantee that it can discover the circuit!

• A graph is called arbitrarily traceable from vertex v, if it is guaranteed

that we can draw a closed trace based on the previous naive approach

starting from vertex v.

PATHS AND CYCLES …

 Discovering Eulerian Circuits in Graphs

86

• Algorithms to discover Eulerian circuits in graphs.

o Hierholtzer (1873): Concatenation of circuits

o Fleury (1883): Gradual extension of tract 𝑇𝑖 , avoiding bridges in the

subgraph 𝐺 − 𝐸(𝑇𝑖) unless there is no other option.

o Tucker (1976): Vertex split as to form individual cycles and

concatenation of cycles.

PATHS AND CYCLES …

 Discovering Eulerian Circuits in Graphs

87

• Hierholtzer

Input: A connected graph 𝐺 = (𝑉, 𝐸) with vertices of even degree

Output: An Eulerian circuit of graph G.

1. Select a vertex 𝒗 ∈ 𝑽 creating circuit 𝑪𝟎 selecting edges ∉ 𝑪𝟎

2. Set 𝒊 ← 𝟎
3. If 𝑬(𝑪𝒊) = 𝑬(𝑮)

𝑪 = 𝑪𝒊 is an Eulerian Circuit

4. Else

5. Select a vertex 𝒗𝒊 of 𝑪𝒊 adjacent to an edge in 𝑪𝒊 and

proceed by constructing another circuit 𝑪’𝒊 starting wit vertex 𝒗𝒊

inside the subgraph 𝑮 − 𝑬(𝑪𝒊)
6. From the circuits 𝑪𝒊 and 𝑪’𝒊 , construct a hyper-circuit 𝑪𝒊+𝟏 starting from vertex

𝒗𝒊−𝟏 crossing circuit 𝑪𝒊 and continuing to circuit 𝑪’𝒊 frinishing to vertex 𝒗𝒊

7. 𝒊 ← 𝒊 + 𝟏
8. Goto step 3.

PATHS AND CYCLES …

 Discovering Eulerian Circuits in Graphs

88

• Hierholtzer

1

2 3

6 5

4

PATHS AND CYCLES …

 Discovering Eulerian Circuits in Graphs

89

• Hierholtzer

• 𝐶1: 1 → 2 → 6 → 1

1

2 3

6 5

4

𝑪𝟏

PATHS AND CYCLES …

 Discovering Eulerian Circuits in Graphs

90

• Hierholtzer

• 𝐶1: 1 → 2 → 6 → 1

• 𝐶2: 2 → 3 → 6 → 5 → 2

1

2 3

6 5

4

𝑪𝟏

𝑪𝟐

PATHS AND CYCLES …

 Discovering Eulerian Circuits in Graphs

91

• Hierholtzer

• 𝐶1: 1 → 2 → 6 → 1

• 𝐶2: 2 → 3 → 6 → 5 → 2

• 𝐶3: 3 → 5 → 4 → 3

1

2 3

6 5

4

𝑪𝟏

𝑪𝟐

𝑪𝟑

PATHS AND CYCLES …

 Discovering Eulerian Circuits in Graphs

92

• Hierholtzer

• 𝐶1: 1 → 2 → 6 → 1

• 𝐶2: 2 → 3 → 6 → 5 → 2

• 𝐶3: 3 → 5 → 4 → 3

1

2 3

6 5

4

𝑪𝟏

𝑪𝟐

𝑪𝟑

PATHS AND CYCLES …

 Discovering Eulerian Circuits in Graphs

93

• Hierholtzer

• 𝐶1: 1 → 2 → 6 → 1

• 𝐶2: 2 → 3 → 6 → 5 → 2

• 𝐶3: 3 → 5 → 4 → 3

1

2 3

6 5

4

𝑪𝟏

𝑪𝟐

𝑪𝟑

Select a vertex in v ∈ 𝐶𝑖
that is adjacent to edge ∉ 𝐶𝑖

PATHS AND CYCLES …

 Discovering Eulerian Circuits in Graphs

94

• Hierholtzer

• 𝐶1: 1 → 2 → 6 → 1

• 𝐶2: 2 → 3 → 6 → 5 → 2

• 𝐶3: 3 → 5 → 4 → 3

1

2 3

6 5

4

𝑪𝟏

𝑪𝟐

𝑪𝟑

Select a vertex in v ∈ 𝐶𝑖
that is adjacent to edge ∉ 𝐶𝑖

Merge consecutively 𝐶’ = 𝐶1 + 𝐶2=

=1 → 2 → 3 → 6 → 5 → 2 → 6 →1

PATHS AND CYCLES …

 Discovering Eulerian Circuits in Graphs

95

• Hierholtzer

• 𝐶1: 1 → 2 → 6 → 1

• 𝐶2: 2 → 3 → 6 → 5 → 2

• 𝐶3: 3 → 5 → 4 → 3

1

2 3

6 5

4

𝑪𝟏

𝑪𝟐

𝑪𝟑

Select a vertex in v ∈ 𝐶𝑖
that is adjacent to edge ∉ 𝐶𝑖

Merge consecutively 𝐶’ = 𝐶1 + 𝐶2=

=1 → 2 → 3 → 6 → 5 → 2 → 6 →1

PATHS AND CYCLES …

 Discovering Eulerian Circuits in Graphs

96

• Hierholtzer

• 𝐶1: 1 → 2 → 6 → 1

• 𝐶2: 2 → 3 → 6 → 5 → 2

• 𝐶3: 3 → 5 → 4 → 3

1

2 3

6 5

4

𝑪𝟏

𝑪𝟐

𝑪𝟑

Select a vertex in v ∈ 𝐶𝑖
that is adjacent to edge ∉ 𝐶𝑖

Merge consecutively 𝐶’ += 𝐶3=

=1→2→3→5→4→3 →6→5→2→6→1

PATHS AND CYCLES …

 Discovering Eulerian Circuits in Graphs

97

• Hierholtzer

• 𝐶1: 1 → 2 → 6 → 1

• 𝐶2: 2 → 3 → 6 → 5 → 2

• 𝐶3: 3 → 5 → 4 → 3

1

2 3

6 5

4

𝑪𝟏

𝑪𝟐

𝑪𝟑

Select a vertex in v ∈ 𝐶𝑖
that is adjacent to edge ∉ 𝐶𝑖

Merge consecutively 𝐶’ += 𝐶3=

=1→2→3→5→4→3 →6→5→2→6→1

PATHS AND CYCLES …

 Discovering Eulerian Circuits in Graphs

98

• Fleury

Input: A connected graph 𝐺 = (𝑉, 𝐸) with vertices of even degree

Output: An Eulerian circuit of graph G.

1. Select a vertex 𝒗𝟎 ∈ 𝑽 as first vertex of the trace

2. Set 𝐓𝟎 ← 𝑽𝟎 and 𝒊 ← 𝟎
3. Let the trace 𝐓𝒊 = 𝒗𝟎, 𝒆𝟏, 𝒗𝟏, … , 𝒆𝒊, 𝒗𝒊

4. From vertex 𝒗𝒊 Select arbitrarily an edge 𝒆𝒊+𝟏 ∉ 𝑻𝒊 that is not a bridge in the

subgraph 𝑮 − 𝑬(𝑻_𝒊), unless there is no other option.

5. Define path 𝑻𝒊+𝟏 = (𝑻𝒊, 𝒆𝒊+𝟏, 𝒗𝒊+𝟏)
6. 𝒊 ← 𝒊 + 𝟏
7. If (𝒊 = |𝑬|)

𝑪 = 𝑻𝒊 is an Eulerian circuit

8. Else

Goto step 3.

PATHS AND CYCLES …

 Discovering Eulerian Circuits in Graphs

99

• Tucker

Input: A connected graph 𝐺 = (𝑉, 𝐸) with vertices of even degree

Output: An Eulerian circuit of graph G.

1. Split the vertices until there exist only vertices of degree “2”

2. Let 𝑮𝟏 the produced graph

3. 𝒊 ← 𝟏
4. Let 𝒄𝟏 the even number of components of graph 𝑮𝟏

5. If 𝒄𝒊 = 𝟏
𝑪 = 𝑮𝒊 is Eulerian circuit

6. Else

Search two components 𝑻 and 𝑻’ of 𝑮_𝒊 having 𝒗𝒊 as common vertex

7. Construct circuit 𝑪𝒊+𝟏 starting from vertex 𝒗𝒊, crossing 𝑻 and 𝑻’ finishing to 𝒗𝒊

8. Define graph 𝑮𝒊+𝟏 = 𝑮𝒊 − 𝑻, 𝑻’ ∪ 𝑪𝒊+𝟏

9. 𝑪_(𝒊 + 𝟏) is a component of the subgraph 𝑮𝒊+𝟏

10. 𝑻 = 𝑪𝒊+𝟏

11. 𝒊 ← 𝒊 + 𝟏
12. Let 𝒄𝒊 is the number of components of subgraph 𝑮𝒊

13. Goto step 5

PATHS AND CYCLES …

 Discovering Eulerian Circuits in Graphs

100

• Tucker

Concept: Split the vertices until there
exist only vertices of degree “2”

PATHS AND CYCLES …

 Discovering Eulerian Circuits in Graphs

101

• Tucker

Concept: Split the vertices until there
exist only vertices of degree “2”

PATHS AND CYCLES …

 Discovering Eulerian Circuits in Graphs

102

• Tucker

Concept: Split the vertices until there
exist only vertices of degree “2”

1 → 2 → 5 → 1

PATHS AND CYCLES …

 Discovering Eulerian Circuits in Graphs

103

• Tucker

Concept: Split the vertices until there
exist only vertices of degree “2”

1 → 2 → 5 → 1

PATHS AND CYCLES …

 Discovering Eulerian Circuits in Graphs

104

• Tucker

Concept: Split the vertices until there
exist only vertices of degree “2”

5 → 4 → 6 → 5

1 → 2 → 5 → 1

PATHS AND CYCLES …

 Discovering Eulerian Circuits in Graphs

105

• Tucker

Concept: Split the vertices until there
exist only vertices of degree “2”

5 → 4 → 6 → 5

1 → 2 → 5 → 1

PATHS AND CYCLES …

 Discovering Eulerian Circuits in Graphs

106

• Tucker

Concept: Split the vertices until there
exist only vertices of degree “2”

5 → 4 → 6 → 5

1 → 2 → 5 → 1

2 → 3 → 4 → 2

PATHS AND CYCLES …

 Discovering Eulerian Circuits in Graphs

107

• Tucker

Concept: Split the vertices until there
exist only vertices of degree “2”

1 → 2 → 5 → 1

5 → 4 → 6 → 5

2 → 3 → 4 → 2

PATHS AND CYCLES …

 Discovering Eulerian Circuits in Graphs

108

• Tucker

Concept: Split the vertices until there
exist only vertices of degree “2”

1 → 2 → 5 → 1

5 → 4 → 6 → 5

2 → 3 → 4 → 2

1 → 2 → 3 → 4 → 2 → 5 → 4 → 6 → 5

PATHS AND CYCLES …

 Chinese Post Office …

109

PATHS AND CYCLES …

 Chinese Postman …

110

PATHS AND CYCLES …

 Chinese Postman Problem…

111

• The “CPP” Problem:

A postman starting from his office has to cross all the streets and

return to his office as soon as possible!

PATHS AND CYCLES …

 Chinese Postman Problem…

112

• The “CPP” Problem:

A postman starting from his office has to cross all the streets and

return to his office as soon as possible!

PATHS AND CYCLES …

 Chinese Postman Problem…

113

• The “CPP” Problem:

A postman starting from his office has to cross all the streets and

return to his office as soon as possible!

PATHS AND CYCLES …

 Chinese Postman Problem…

114

• The “CPP” Problem:

A postman starting from his office has to cross all the streets and

return to his office as soon as possible!

PATHS AND CYCLES …

 Chinese Postman Problem…

115

• The “CPP” Problem:

A postman starting from his office has to cross all the streets and

return to his office as soon as possible!

PATHS AND CYCLES …

 Chinese Postman Problem…

116

• The “CPP” Problem:

A postman starting from his office has to cross all the streets and

return to his office as soon as possible!

PATHS AND CYCLES …

 Chinese Postman Problem…

117

• The “CPP” Problem:

A postman starting from his office has to cross all the streets and

return to his office as soon as possible!

PATHS AND CYCLES …

 Chinese Postman Problem…

118

• The “CPP” Problem:

A postman starting from his office has to cross all the streets and

return to his office as soon as possible!

PATHS AND CYCLES …

 Chinese Postman Problem…

119

• The “CPP” Problem:

A postman starting from his office has to cross all the streets and

return to his office as soon as possible!

PATHS AND CYCLES …

 Chinese Postman Problem…

120

• The “CPP” Problem:

A postman starting from his office has to cross all the streets and

return to his office as soon as possible!

PATHS AND CYCLES …

 Chinese Postman Problem…

121

• The “CPP” Problem:

A postman starting from his office has to cross all the streets and

return to his office as soon as possible!

PATHS AND CYCLES …

 Chinese Postman Problem…

122

• The “CPP” Problem:

A postman starting from his office has to cross all the streets and

return to his office as soon as possible!

PATHS AND CYCLES …

 Chinese Postman Problem…

123

• The “CPP” Problem:

A postman starting from his office has to cross all the streets and

return to his office as soon as possible!

PATHS AND CYCLES …

 Chinese Postman Problem…

124

• The “CPP” Problem:

A postman starting from his office has to cross all the streets and

return to his office as soon as possible!

PATHS AND CYCLES …

 Chinese Postman Problem…

125

• The “CPP” Problem:

A postman starting from his office has to cross all the streets and

return to his office as soon as possible!

PATHS AND CYCLES …

 Chinese Postman Problem…

126

• The “CPP” Problem:

A postman starting from his office has to cross all the streets and

return to his office as soon as possible!

PATHS AND CYCLES …

 Chinese Postman Problem…

127

• The “CPP” Problem:

A postman starting from his office has to cross all the streets and

return to his office as soon as possible!

PATHS AND CYCLES …

 Chinese Postman Problem…

128

• The “CPP” Problem:

A postman starting from his office has to cross all the streets and

return to his office as soon as possible!

PATHS AND CYCLES …

 Chinese Postman Problem…

129

• The “CPP” Problem:

A postman starting from his office has to cross all the streets and

return to his office as soon as possible!

PATHS AND CYCLES …

 Chinese Postman Problem…

130

• The “CPP” Problem:

A postman starting from his office has to cross all the streets and

return to his office as soon as possible!

PATHS AND CYCLES …

 Chinese Postman Problem…

131

• The “CPP” Problem:

A postman starting from his office has to cross all the streets and

return to his office as soon as possible!

PATHS AND CYCLES …

 Chinese Postman Problem…

132

• The “CPP” Problem:

A postman starting from his office has to cross all the streets and

return to his office as soon as possible!

Mei-Ko Kwan,

1962

PATHS AND CYCLES …

 Chinese Postman Problem…

133

• The “CPP” Problem:

A postman starting from his office has to cross all the streets and

return to his office as soon as possible!

• find a shortest closed path or circuit that visits every edge

of an (connected) undirected graph.

• When the graph has an Eulerian circuit that is an optimal solution.

• Otherwise, the optimization problem is to find the smallest number of

graph edges to duplicate (or the subset of edges with the minimum

possible total weight) so that the resulting multigraph does have an

Eulerian circuit.

• It may be solved in polynomial time.

PATHS AND CYCLES …

 Chinese Postman Problem…

134

• The “CPP” Problem:

A postman starting from his office has to cross all the streets and

return to his office as soon as possible!

• If the graph 𝐺 is not Eulerian, then some edges have to be crossed more

than one times … how many?

PATHS AND CYCLES …

 Chinese Postman Problem…

135

• The “CPP” Problem:

A postman starting from his office has to cross all the streets and

return to his office as soon as possible!

• If the graph 𝐺 is not Eulerian, then some edges have to be crossed more

than one times … how many?

o If graph 𝐺 is a tree → … times

PATHS AND CYCLES …

 Chinese Postman Problem…

136

• The “CPP” Problem:

A postman starting from his office has to cross all the streets and

return to his office as soon as possible!

• If the graph 𝐺 is not Eulerian, then some edges have to be crossed more

than one times … how many?

o If graph 𝐺 is a tree → two times

The length 𝑙 of the optimal solution is 𝐸 ≤ 𝑙 ≤ 2|𝐸|

PATHS AND CYCLES …

 Chinese Postman Problem…

137

• The “CPP” Problem:

A postman starting from his office has to cross all the streets and

return to his office as soon as possible!

• If the graph 𝐺 is not Eulerian, then some edges have to be crossed more

than one times … how many?

o If graph 𝐺 is a tree → two times

The length 𝑙 of the optimal solution is 𝐸 ≤ 𝑙 ≤ 2|𝐸|

o Otherwise ???

PATHS AND CYCLES …

 Chinese Postman Problem…

138

• The “CPP” Problem:

A postman starting from his office has to cross all the streets and

return to his office as soon as possible!

• If the graph 𝐺 is not Eulerian, then some edges have to be crossed more

than one times … how many?

o Solution in case the graph 𝐺 is not a tree …

PATHS AND CYCLES …

 Chinese Postman Problem…

139

• The “CPP” Problem:

A postman starting from his office has to cross all the streets and

return to his office as soon as possible!

• If the graph 𝐺 is not Eulerian, then some edges have to be crossed more

than one times … how many?

o Solution in case the graph 𝐺 is not a tree …

We select the vertices of odd-degree and connect them with

“virtual edges” (if necessary), of weight equal to the weight (length) of

the shortest path between them.

PATHS AND CYCLES …

 Chinese Postman Problem…

140

• The “CPP” Problem:

A postman starting from his office has to cross all the streets and

return to his office as soon as possible!

• If the graph 𝐺 is not Eulerian, then some edges have to be crossed more

than one times … how many?

o Solution in case the graph 𝐺 is not a tree …

We apply an algorithm for the computation of Eulerian circuit, and

replace each “virtual-edge”, let 𝑥𝑦, with a real shortest path from

vertex 𝑥 to vertex 𝑦.

PATHS AND CYCLES …

 Chinese Postman Problem…

141

• The “CPP” Problem:

A postman starting from his office has to cross all the streets and

return to his office as soon as possible!

• If the graph 𝐺 is not Eulerian, then some edges have to be crossed more

than one times … how many?

o Solution in case the graph 𝐺 is not a tree …

We apply an algorithm for the computation of Eulerian circuit, and

replace each “virtual-edge”, let 𝑥𝑦, with a real shortest path from

vertex 𝑥 to vertex 𝑦.

PATHS AND CYCLES …

 Chinese Postman Problem…

142

• The “CPP” Problem:

A postman starting from his office has to cross all the streets and

return to his office as soon as possible!

• If the graph 𝐺 is not Eulerian, then some edges have to be crossed more

than one times … how many?

o Solution in case the graph 𝐺 is not a tree …

We apply an algorithm for the computation of Eulerian circuit, and

replace each “virtual-edge”, let 𝑥𝑦, with a real shortest path from

vertex 𝑥 to vertex 𝑦.

PATHS AND CYCLES …

 Chinese Postman Problem…

143

• The “CPP” Problem:

A postman starting from his office has to cross all the streets and

return to his office as soon as possible!

• If the graph 𝐺 is not Eulerian, then some edges have to be crossed more

than one times … how many?

o Solution in case the graph 𝐺 is not a tree …

We apply an algorithm for the computation of Eulerian circuit, and

replace each “virtual-edge”, let 𝑥𝑦, with a real shortest path from

vertex 𝑥 to vertex 𝑦.

PATHS AND CYCLES …

 Chinese Postman Problem…

144

• The “CPP” Problem:

A postman starting from his office has to cross all the streets and

return to his office as soon as possible!

• If the graph 𝐺 is not Eulerian, then some edges have to be crossed more

than one times … how many?

o Solution in case the graph 𝐺 is not a tree …

We apply an algorithm for the computation of Eulerian circuit, and

replace each “virtual-edge”, let 𝑥𝑦, with a real shortest path from

vertex 𝑥 to vertex 𝑦.

Optimal Matching

PATHS AND CYCLES …

 Chinese Postman Problem…

145

• The “CPP” Problem:

A postman starting from his office has to cross all the streets and

return to his office as soon as possible!

• If the graph 𝐺 is not Eulerian, then some edges have to be crossed more

than one times … how many?

o Solution in case the graph 𝐺 is not a tree …

We apply an algorithm for the computation of Eulerian circuit, and

replace each “virtual-edge”, let 𝑥𝑦, with a real shortest path from

vertex 𝑥 to vertex 𝑦.

Optimal Matching

PATHS AND CYCLES …

 Chinese Postman Problem…

146

• The “CPP” Problem:

A postman starting from his office has to cross all the streets and

return to his office as soon as possible!

• If the graph 𝐺 is not Eulerian, then some edges have to be crossed more

than one times … how many?

o Solution in case the graph 𝐺 is not a tree …

We apply an algorithm for the computation of Eulerian circuit, and

replace each “virtual-edge”, let 𝑥𝑦, with a real shortest path from

vertex 𝑥 to vertex 𝑦.

PATHS AND CYCLES …

 Chinese Postman Problem…

147

• The “CPP” Problem:

A postman starting from his office has to cross all the streets and

return to his office as soon as possible!

• If the graph 𝐺 is not Eulerian, then some edges have to be crossed more

than one times … how many?

o Solution in case the graph 𝐺 is not a tree …

We apply an algorithm for the computation of Eulerian circuit, and

replace each “virtual-edge”, let 𝑥𝑦, with a real shortest path from

vertex 𝑥 to vertex 𝑦.

PATHS AND CYCLES …

 Around the World …

148

PATHS AND CYCLES …

 Around the World …

149

PATHS AND CYCLES …

 Around the World …

150

PATHS AND CYCLES …

 Around the World …

151

Sir William Rowan

Hamilton (1806-1865)

PATHS AND CYCLES …

 Around the World …

152

Sir William Rowan

Hamilton (1806-1865)

Given a 12-side geometrical shape (regular graph of degree 3, 20 vertices and 30 edges), each vertex

represents a city. Let the players “A” and “B”. Player “A” defines the 5 first cities and challenges

“B” to draw a path crossing only once each of the rest cities finishing, to the city given first by “A”.

PATHS AND CYCLES …

 Around the World …

153

Sir William Rowan

Hamilton (1806-1865)

Given a 12-side geometrical shape (regular graph of degree 3, 20 vertices and 30 edges), each vertex

represents a city. Let the players “A” and “B”. Player “A” defines the 5 first cities and challenges

“B” to draw a path crossing only once each of the rest cities finishing, to the city given first by “A”.

PATHS AND CYCLES …

 Around the World …

154

Sir William Rowan

Hamilton (1806-1865)

Given a 12-side geometrical shape (regular graph of degree 3, 20 vertices and 30 edges), each vertex

represents a city. Let the players “A” and “B”. Player “A” defines the 5 first cities and challenges

“B” to draw a path crossing only once each of the rest cities finishing, to the city given first by “A”.

PATHS AND CYCLES …

 Around the World …

155

Sir William Rowan

Hamilton (1806-1865)

?

PATHS AND CYCLES …

 Hamiltonian Graphs

156

• Problem:

Is it possible in each graph to find a closed path (cycle)

that crosses all vertices only once?

PATHS AND CYCLES …

 Hamiltonian Graphs

157

• Problem:

Is it possible in each graph to find a closed path (cycle)

that crosses all vertices only once?

• A Hamiltonian path (or traceable path) is a path in an undirected or

directed graph that visits each vertex exactly once.

• A Hamiltonian cycle (or Hamiltonian circuit) is a Hamiltonian path that

is a cycle.

PATHS AND CYCLES …

 Hamiltonian Graphs

158

• Problem:

Is it possible in each graph to find a closed path (cycle)

that crosses all vertices only once?

• A Hamiltonian path (or traceable path) is a path in an undirected or

directed graph that visits each vertex exactly once.

• A Hamiltonian cycle (or Hamiltonian circuit) is a Hamiltonian path that

is a cycle.

• A Hamiltonian graph, is a graph that contains Hamiltonian cycle.

PATHS AND CYCLES …

 Hamiltonian Graphs

159

• A graph 𝐺 is called traceable if it has Hamiltonian path.

• Every Hamiltonian graph is traceable, but the inverse does not hold.

• A graph 𝐺 is called homogeneously traceable if there exists a

Hamiltonian path starting from a random vertex.

• A graph 𝐺 is called hypo-Hamiltonian, if 𝐺 is not Hamiltonian but the

graph 𝐺 − 𝑣 is Hamiltonian.

• Every hypo-Hamiltonian graph is homogeneously traceable, but the

inverse does not hold.

• A graph 𝐺 is called Hamiltonian-connected if every two vertices are

connected by a Hamiltonian path.

• Every Hamiltonian-connected graph where 𝑛 ≥ 3 is Hamiltonian, but

the inverse does not hold.

PATHS AND CYCLES …

 Hamiltonian Graphs

160

• Problem:

The necessary and sufficient condition for a graph to be Hamiltonian?

… NP-Complete

• Theorem 1: Every complete graph is Hamiltonian

… the graph 𝐾𝑛 is Hamiltonian ∀ 𝑛 ≥ 1

• Theorem 2: Each 𝐾𝑛 graph of odd cardinality of vertices has

(𝑛 − 1)/2 Hamiltonian cycles with different edges.

PATHS AND CYCLES …

 Hamiltonian Graphs

161

• Problem:

The necessary and sufficient condition for a graph to be Hamiltonian?

… NP-Complete

• Theorem 1: Every complete graph is Hamiltonian

… the graph 𝐾𝑛 is Hamiltonian ∀ 𝑛 ≥ 1

• Theorem 2: Each 𝐾𝑛 graph of odd cardinality of vertices has

(𝑛 − 1)/2 Hamiltonian cycles with different edges.

o A complete graph has n(n-1)/2 edges.

o A Hamiltonian graph cycle has length n.

o The graph may has at most (n-1)/2 cycles of different edges.

o It has to be proven that is has exactly as many cycles …

PATHS AND CYCLES …

 Hamiltonian Graphs

162

• Problem:

The necessary and sufficient condition for a graph to be Hamiltonian?

… NP-Complete

• Theorem 1: Every complete graph is Hamiltonian

… the graph 𝐾𝑛 is Hamiltonian ∀ 𝑛 ≥ 1

• Theorem 2: Each 𝐾𝑛 graph of odd cardinality of vertices has

(𝑛 − 1)/2 Hamiltonian cycles with different edges.

Proof:

PATHS AND CYCLES …

 Hamiltonian Graphs

163

• Problem:

The necessary and sufficient condition for a graph to be Hamiltonian?

… NP-Complete

• Theorem 1: Every complete graph is Hamiltonian

… the graph 𝐾𝑛 is Hamiltonian ∀ 𝑛 ≥ 1

• Theorem 2: Each 𝐾𝑛 graph of odd cardinality of vertices has

(𝑛 − 1)/2 Hamiltonian cycles with different edges.

𝑣2

𝑣3

𝑣5
𝑣𝑛−2

𝑣𝑛

𝑣𝑛−1
𝑣𝑛−3

𝑣4

𝑣1

Proof:

PATHS AND CYCLES …

 Hamiltonian Graphs

164

• Problem:

The necessary and sufficient condition for a graph to be Hamiltonian?

… NP-Complete

• Theorem 1: Every complete graph is Hamiltonian

… the graph 𝐾𝑛 is Hamiltonian ∀ 𝑛 ≥ 1

• Theorem 2: Each 𝐾𝑛 graph of odd cardinality of vertices has

(𝑛 − 1)/2 Hamiltonian cycles with different edges.

𝑣4

𝑣2

𝑣3
…

𝑣𝑛−2

𝑣𝑛
𝑣𝑛−1

…

𝑣1

Proof:

𝑣1

PATHS AND CYCLES …

 Hamiltonian Graphs

165

• Problem:

The necessary and sufficient condition for a graph to be Hamiltonian?

… NP-Complete

• Theorem 1: Every complete graph is Hamiltonian

… the graph 𝐾𝑛 is Hamiltonian ∀ 𝑛 ≥ 1

• Theorem 2: Each 𝐾𝑛 graph of odd cardinality of vertices has

(𝑛 − 1)/2 Hamiltonian cycles with different edges.

𝑣4

𝑣2

𝑣3
…

𝑣𝑛−2

𝑣𝑛
𝑣𝑛−1

…

𝑣1

Proof:

𝑣1

{𝑣6…𝑣𝑛}

PATHS AND CYCLES …

 Hamiltonian Graphs

166

• Theorem 3 (Dirac, 1952): If 𝐺 is a simple graph with 𝑛 ≥ 3 vertices

and it holds that 𝑑 𝐺 ≥ 𝑛/2, then the graph is Hamiltonian.

Proof:

o Let us assume that there exist 𝑘 new vertices connected to all the

vertices of 𝐺.

o Let that 𝑘 is as small as possible as the produced graph 𝐺’ to be

Hamiltonian.

o We will assume that 𝑘 ≥ 0 and we will result to contradiction.

PATHS AND CYCLES …

 Hamiltonian Graphs

167

• Theorem 3 (Dirac, 1952): If 𝐺 is a simple graph with 𝑛 ≥ 3 vertices

and it holds that 𝑑 𝐺 ≥ 𝑛/2, then the graph is Hamiltonian.

Proof:

o Let us assume 𝐶 = (𝑣, 𝑝, 𝑤,⋯ , 𝑣) a Hamiltonian cycle of graph 𝐺’,

where 𝑣, 𝑤 are vertices of 𝐺, while vertex 𝑝 is one of the 𝑘 vertices.

o Vertices 𝑣, 𝑤 are not adjacent, otherwise vertex 𝑝 could be bypassed

negating the assumption that 𝑘 is as small as possible.

o A vertex 𝑤’ adjacent to 𝑤, can not appear after a vertex 𝑣’ that is

adjacent to 𝑣, because the sequence 𝑣 → 𝑝 → 𝑤 → ⋯ → 𝑣’ → 𝑤’ →

⋯ → 𝑣 could be substituted with the sequence 𝑣 → 𝑣’ → ⋯ → 𝑤 →

𝑤’ → ⋯ → 𝑣, inverting the part between 𝑤 and 𝑣’,

PATHS AND CYCLES …

 Hamiltonian Graphs

168

• Theorem 3 (Dirac, 1952): If 𝐺 is a simple graph with 𝑛 ≥ 3 vertices

and it holds that 𝑑 𝐺 ≥ 𝑛/2, then the graph is Hamiltonian.

Proof:

o Hence, the vertices of 𝐺’ that are non adjacent to 𝑤 are at least as

many as the vertices adjacent to 𝑣 (i.e., at least 𝑛/2 + 𝑘).

o The of vertices of 𝐺’ that are adjacent to w are at least 𝑛/2 + 𝑘

o Since there does not exist a vertex in 𝐺’ that is both adjacent and non-

adjacent to 𝑤, it follows that the total number 𝑛 + 𝑘 of the vertices

of 𝐺’ is no less than 𝑛 + 2𝑘 …which is a contradiction.

PATHS AND CYCLES …

 Hamiltonian Graphs

169

• Corollary: If the simple graph 𝐺 with 𝑛 ≥ 3 vertices and it holds

that 𝑑 𝐺 ≥ (𝑛 − 1)/2, then the graph has a Hamiltonian path .

Proof:

o Let the hyper graph 𝐻 = 𝐺 + 𝐾1, and let v a vertex of 𝐻 ∉ 𝑉(𝐺).

o Since the hyper graph 𝐻 is of order 𝑛 + 1, it holds that

𝑑 𝐻 = 𝑑 𝐺 ≥ (𝑛 − 1)/2 + 1 = (𝑛 + 1)/2.

o From Dirac’s Theorem, the graph 𝐻 has a Hamiltonian cycle.

o Then, omitting vertex 𝑣 it results to a Hamiltonian path.

PATHS AND CYCLES …

 Hamiltonian Graphs

170

• Theorem 4 (Ore 1960): If the simple graph 𝐺 with 𝑛 ≥ 3 vertices and

for all its non-adjacent vertices 𝑥 and 𝑦 it holds that

𝑑 𝑥 + 𝑑(𝑦) ≥ 𝑛, then the graph 𝐺 is Hamiltonian.

Proof:

o Let us assume that the proposition of the Theorem is false.

o Then, there exist a non-Hamiltonian graph 𝐺 with n vertices and the

maximum number of edges, in order for our assumption to be

satisfied.

• If we add one extra edge (𝑥, 𝑦) on this graph between the vertices

x and y, then the graph 𝐻 = 𝐺 + (𝑥, 𝑦) will be Hamiltonian.

• Since 𝑛 ≥ 3 it follows that the graph 𝐺 is not complete.

PATHS AND CYCLES …

 Hamiltonian Graphs

171

• Theorem 4 (Ore 1960): If the simple graph 𝐺 with 𝑛 ≥ 3 vertices and

for all its non-adjacent vertices 𝑥 and 𝑦 it holds that

𝑑 𝑥 + 𝑑(𝑦) ≥ 𝑛, then the graph 𝐺 is Hamiltonian.

Proof:

o Let us assume that the proposition of the Theorem is false.

o Let us assume that the graph 𝐻 is Hamiltonian an each Hamiltonian

cycle crosses edge (𝑥, 𝑦).

• In the graph 𝐺 there exist a Hamiltonian path

𝑃 = (𝑣1, 𝑣2, … , 𝑣𝑛), where 𝑣1 = 𝑥 and 𝑣𝑛 = 𝑦.

• If in this graph 𝐺, vertex x is adjacent to 𝑣𝑖, then it is not possible

vertex 𝑣𝑛 to be adjacent to vertex 𝑣𝑖−1 , because then graph

𝐺 there would exist a Hamiltonian cycle

(𝑥, 𝑣𝑖 , 𝑣𝑖+1, … , 𝑣𝑛, 𝑣𝑖−1, 𝑣𝑖−2, … , 𝑣1).

PATHS AND CYCLES …

 Hamiltonian Graphs

172

• Theorem 4 (Ore 1960): If the simple graph 𝐺 with 𝑛 ≥ 3 vertices and

for all its non-adjacent vertices 𝑥 and 𝑦 it holds that

𝑑 𝑥 + 𝑑(𝑦) ≥ 𝑛, then the graph 𝐺 is Hamiltonian.

Proof:

o Let us assume that the proposition of the Theorem is false.

o Let us assume that the graph 𝐻 is Hamiltonian an each Hamiltonian

cycle crosses edge (𝑥, 𝑦).

• Then, for each vertex of 𝐺 that is adjacent to vertex 𝑥 there exist a

vertex in the graph 𝐺 − 𝑦 that is not adjacent to vertex 𝑦.

• Then, it holds: 𝑑 𝑦 ≤ (𝑛 − 1) − 𝑑(𝑥), that is a contradiction.

PATHS AND CYCLES …

 Hamiltonian Graphs

173

• Theorem 5 (Bondy & Chvatal, 1976): Let 𝐺 be a simple graph, where

for two distinct non adjacent vertices 𝑥 and 𝑦 it holds that

𝑑 𝑥 + 𝑑 𝑦 ≥ 𝑛 . Then the graph 𝐺 is Hamiltonian iff the graph

𝐺 + (𝑥, 𝑦) is Hamiltonian.

Proof:

PATHS AND CYCLES …

 Hamiltonian Graphs

174

• Theorem 5 (Bondy & Chvatal, 1976): Let 𝐺 be a simple graph, where

for two distinct non adjacent vertices 𝑥 and 𝑦 it holds that

𝑑 𝑥 + 𝑑 𝑦 ≥ 𝑛. Then the graph G is Hamiltonian iff the graph

𝐺 + (𝑥, 𝑦) is Hamiltonian.

Proof:

PATHS AND CYCLES …

 Hamiltonian Graphs

175

• Theorem 5 (Bondy & Chvatal, 1976): Let 𝐺 be a simple graph, where

for two distinct non adjacent vertices 𝑥 and 𝑦 it holds that

𝑑 𝑥 + 𝑑 𝑦 ≥ 𝑛. Then the graph G is Hamiltonian iff the graph

𝐺 + (𝑥, 𝑦) is Hamiltonian.

Proof:

o iff → if and only if

PATHS AND CYCLES …

 Hamiltonian Graphs

176

• Theorem 5 (Bondy & Chvatal, 1976): Let 𝐺 be a simple graph, where

for two distinct non adjacent vertices 𝑥 and 𝑦 it holds that

𝑑 𝑥 + 𝑑 𝑦 ≥ 𝑛. Then the graph G is Hamiltonian iff the graph

𝐺 + (𝑥, 𝑦) is Hamiltonian.

Proof:

o iff → if and only if

o Ore’s Theorem utilizes the strong assumption that this relation holds

for every pair of non adjacent vertices.

PATHS AND CYCLES …

 Hamiltonian Graphs

177

• Theorem 5 (Bondy & Chvatal, 1976): Let 𝐺 be a simple graph, where

for two distinct non adjacent vertices 𝑥 and 𝑦 it holds that

𝑑 𝑥 + 𝑑 𝑦 ≥ 𝑛. Then the graph G is Hamiltonian iff the graph

𝐺 + (𝑥, 𝑦) is Hamiltonian.

Proof:

o iff → if and only if

o Ore’s Theorem utilizes the strong assumption that this relation holds

for every pair of non adjacent vertices.

• The “if ” is obvious

PATHS AND CYCLES …

 Hamiltonian Graphs

178

• Theorem 5 (Bondy & Chvatal, 1976): Let 𝐺 be a simple graph, where

for two distinct non adjacent vertices 𝑥 and 𝑦 it holds that

𝑑 𝑥 + 𝑑 𝑦 ≥ 𝑛. Then the graph G is Hamiltonian iff the graph

𝐺 + (𝑥, 𝑦) is Hamiltonian.

Proof:

o iff → if and only if

o Ore’s Theorem utilizes the strong assumption that this relation holds

for every pair of non adjacent vertices.

• The “if ” is obvious

• The “only if ” is proven following the same process as in Ore’s

Theorem.

PATHS AND CYCLES …

 Discovering Hamiltonian Cycles

179

• Let a graph 𝐺 with 𝑛 = 5 vertices …

• Define Matrices 𝑀1 and 𝑀

• After sequential 𝑛 − 1 matrix multiplications and input concatenations

result a matrix 𝑀∗

• Check if the inputs of 𝑀∗ are Hamiltonian paths /cycles.

PATHS AND CYCLES …

 Discovering Hamiltonian Cycles

180

• Let a graph 𝐺 with 𝑛 = 5 vertices …

• Define Matrices 𝑀1 and 𝑀 as follows:

PATHS AND CYCLES …

 Discovering Hamiltonian Cycles

181

B

E

A

C

D

• Let a graph 𝐺 with 𝑛 = 5 vertices …

• Define Matrices 𝑀1 and 𝑀 as follows:

0 AB 0 0 0

0 0 BC 0 0

0 0 0 CD CE

0 0 0 0 DE

EA EB 0 ED 0

0 B 0 0 0

0 0 C 0 0

0 0 0 D E

0 0 0 0 E

A B 0 D 0

𝐺

𝑀1 𝑀

PATHS AND CYCLES …

 Discovering Hamiltonian Cycles

182

• Let a graph 𝐺 with 𝑛 = 5 vertices …

• Define Matrices 𝑀1 and 𝑀 as follows:

• Utilizing these matrices we proceed to sequential

matrix multiplications in order to construct matrices:

𝑀𝑗 = 𝑀𝑗−1 ∗ 𝑀, 1 < 𝑗 < 𝑛 , where, for each

element (𝑟, 𝑠) of 𝑀𝑗 it holds that:

𝑀𝑗 𝑟,𝑠 = 𝑡=1
𝑛 𝑀𝑗−1 𝑟, 𝑡 ∗ 𝑀(𝑡, 𝑠)

and the symbol “ * ” indicates the concatenation of the

corresponding elements of the two matrices 𝑀𝑗−1 and

𝑀, if both the elements are non-zero, while the symbol

of the element of 𝑀 is not included in the symbol of

element in 𝑀𝑗−1 (Hadamard Product).

0 AB 0 0 0

0 0 BC 0 0

0 0 0 CD CE

0 0 0 0 DE

EA EB 0 ED 0

0 B 0 0 0

0 0 C 0 0

0 0 0 D E

0 0 0 0 E

A B 0 D 0

B

E

A

C

D

𝐺

𝑀1

𝑀

PATHS AND CYCLES …

 Discovering Hamiltonian Cycles

183

0 AB 0 0 0

0 0 BC 0 0

0 0 0 CD CE

0 0 0 0 DE

EA EB 0 ED 0

B

E

A

C

D

𝐺

𝑀1

0 B 0 0 0

0 0 C 0 0

0 0 0 D E

0 0 0 0 E

A B 0 D 0

𝑀

𝑀2 = 𝑀1 ∗ 𝑀

𝑀2(1,3)= 𝑡=1
5 𝑀1 1, 𝑡 ∗ 𝑀(𝑡, 3)

𝑀1(1, :) → 0 AB 0 0 0

𝑀(: , 3) → 0 C 0 0 0

M_2 (1,3) → 0 ABC 0 0 0

0 0 ABC 0 0

0 0 0 BCD BCE

CEA CEB 0 CED CDE

DEA DEB 0 0 0

0 EAB EBC 0 0

𝑀2

PATHS AND CYCLES …

 Discovering Hamiltonian Cycles

184

B

E

A

C

D

𝐺𝑀1

𝑀

𝑀2 𝑀3

𝑀4

PATHS AND CYCLES …

 Discovering Hamiltonian Cycles

185

0 AB 0 0 0

0 0 BC 0 0

0 0 0 CD CE

0 0 0 0 DE

EA EB 0 ED 0

0 B 0 0 0

0 0 C 0 0

0 0 0 D E

0 0 0 0 E

A B 0 D 0

B

E

A

C

D

𝐺𝑀1

𝑀

0 0 ABC 0 0

0 0 0 BCD BCE

CEA CEB 0 CED CDE

DEA DEB 0 0 0

0 EAB EBC 0 0

𝑀2

0 0 0 ABCD ABCE

BCEA 0 0 BCED BCDE

CDEA CEAB

CDEB

0 0 0

0 DEAB DEBC 0 0

0 0 EABC EBCD 0

𝑀3

0 0 0 ABCED ABCDE

BCDEA 0 0 0 0

0 CDEAB 0 0 0

0 0 DEABC 0 0

0 0 0 EABCD 0

𝑀4

PATHS AND CYCLES …

 Discovering Hamiltonian Cycles

186

0 AB 0 0 0

0 0 BC 0 0

0 0 0 CD CE

0 0 0 0 DE

EA EB 0 ED 0

0 B 0 0 0

0 0 C 0 0

0 0 0 D E

0 0 0 0 E

A B 0 D 0

B

E

A

C

D

𝐺𝑀1

𝑀

0 0 ABC 0 0

0 0 0 BCD BCE

CEA CEB 0 CED CDE

DEA DEB 0 0 0

0 EAB EBC 0 0

𝑀2

0 0 0 ABCD ABCE

BCEA 0 0 BCED BCDE

CDEA CEAB

CDEB

0 0 0

0 DEAB DEBC 0 0

0 0 EABC EBCD 0

𝑀3

0 0 0 ABCED ABCDE

BCDEA 0 0 0 0

0 CDEAB 0 0 0

0 0 DEABC 0 0

0 0 0 EABCD 0

𝑀4

PATHS AND CYCLES …

 Discovering Hamiltonian Cycles

187

0 B 0 0 0

0 0 C 0 0

0 0 0 D E

0 0 0 0 E

A B 0 D 0

B

E

A

C

D

𝐺

𝑀

0 0 0 ABCED ABCDE

BCDEA 0 0 0 0

0 CDEAB 0 0 0

0 0 DEABC 0 0

0 0 0 EABCD 0

𝑀4

PATHS AND CYCLES …

 Discovering Hamiltonian Cycles

188

0 B 0 0 0

0 0 C 0 0

0 0 0 D E

0 0 0 0 E

A B 0 D 0

B

E

A

C

D

𝐺

𝑀

0 0 0 ABCED ABCDE

BCDEA 0 0 0 0

0 CDEAB 0 0 0

0 0 DEABC 0 0

0 0 0 EABCD 0

𝑀4

PATHS AND CYCLES …

 Discovering Hamiltonian Cycles

189

0 B 0 0 0

0 0 C 0 0

0 0 0 D E

0 0 0 0 E

A B 0 D 0

B

E

A

C

D

𝐺

𝑀

0 0 0 ABCED ABCDE

BCDEA 0 0 0 0

0 CDEAB 0 0 0

0 0 DEABC 0 0

0 0 0 EABCD 0

𝑀4

PATHS AND CYCLES …

 Discovering Hamiltonian Cycles

190

0 B 0 0 0

0 0 C 0 0

0 0 0 D E

0 0 0 0 E

A B 0 D 0

B

E

A

C

D

𝐺

𝑀

0 0 0 ABCED ABCDE

BCDEA 0 0 0 0

0 CDEAB 0 0 0

0 0 DEABC 0 0

0 0 0 EABCD 0

𝑀4

PATHS AND CYCLES …

 Discovering Hamiltonian Cycles

191

0 B 0 0 0

0 0 C 0 0

0 0 0 D E

0 0 0 0 E

A B 0 D 0

B

E

A

C

D

𝐺

𝑀

0 0 0 ABCED ABCDE

BCDEA 0 0 0 0

0 CDEAB 0 0 0

0 0 DEABC 0 0

0 0 0 EABCD 0

𝑀4

PATHS AND CYCLES …

 The Traveling Salesman Problem

192

• The “TSP” Problem:

Given a list of cities and the distances between each pair of cities, what is the

shortest possible route a salesman should take in order to visit each city and

return to the origin city?

PATHS AND CYCLES …

 The Traveling Salesman Problem

193

• The “TSP” Problem:

Given a list of cities and the distances between each pair of cities, what is the

shortest possible route a salesman should take in order to visit each city and

return to the origin city?

o Passing only once from each city …

o Passing more than once from each city …

PATHS AND CYCLES …

 The Traveling Salesman Problem

194

• The “TSP” Problem:

Given a list of cities and the distances between each pair of cities, what is the

shortest possible route a salesman should take in order to visit each city and

return to the origin city?

o Passing only once from each city …

o Passing more than once from each city …

• If the graph 𝐺 is an Euclidean graph (i.e., it holds the triangle inequality

for every three vertices that form a triangle), it is not preferable for the

salesman to pass more than once from the cities already visited.

• The number of Hamiltonian cycles in an Euclidean graph is (𝑛 − 1)!/2 .

Starting from an origin city, the salesman can move to 𝑛 − 1 cities, then

to 𝑛 − 2 cities, to 𝑛 − 3,…, etc., while the destination counts twice.

PATHS AND CYCLES …

 The Traveling Salesman Problem

195

• The “TSP” Problem:

Given a list of cities and the distances between each pair of cities, what is the

shortest possible route a salesman should take in order to visit each city and

return to the origin city?

o Passing only once from each city …

o Passing more than once from each city …

• Brute Force on (𝑛 − 1)!/2 Hamiltonian cycles → 𝑂(𝑛𝑛)

• Dynamic Programming (Branch and Bound) → 𝑂(𝑛2 2𝑛)

𝑻𝑺𝑷 ∈ 𝑵𝑷 − 𝑪𝒐𝒎𝒑𝒍𝒆𝒕𝒆

PATHS AND CYCLES …

 The Traveling Salesman Problem

196

• “TSP” Problem Definition:

Given a complete undirected graph 𝐺, with weighted edges 𝑤𝑖𝑗 ∈ 𝑁, ∀ 𝑖, 𝑗 ∈

𝐸(𝐺), find a Hamiltonian cycle 𝑊 in 𝐺, such that the sum of the weights on

the edges to be minimum?

min

i,j ∈W

𝑤𝑖𝑗

PATHS AND CYCLES …

 The Traveling Salesman Problem

197

• “TSP” Problem Definition:

Given a complete undirected graph 𝐺, with weighted edges 𝑤𝑖𝑗 ∈ 𝑁, ∀ 𝑖, 𝑗 ∈

𝐸 𝐺 and a number 𝑘 ∈ 𝑁, find if there exists a Hamiltonian cycle 𝑊 in 𝐺,

such that the sum of the weights on the edges to be ≤ 𝑘 ?

i,j ∈W

𝑤𝑖𝑗 ≤ 𝑘

PATHS AND CYCLES …

 The Traveling Salesman Problem

198

• “TSP” Problem Definition:

Given a complete undirected graph 𝐺, with weighted edges 𝑤𝑖𝑗 ∈ 𝑁, ∀ 𝑖, 𝑗 ∈

𝐸 𝐺 and a number 𝑘 ∈ 𝑁, find if there exists a Hamiltonian cycle 𝑊 in 𝐺,

such that the sum of the weights on the edges to be ≤ 𝑘 ?

𝑻𝑺𝑷 ∈ 𝑵𝑷 − 𝑪𝒐𝒎𝒑𝒍𝒆𝒕𝒆

PATHS AND CYCLES …

 The Traveling Salesman Problem

199

PATHS AND CYCLES …

 The Traveling Salesman Problem

200

PATHS AND CYCLES …

 The Traveling Salesman Problem

201

• Reduction:

The most important method (tool) to prove that a problem P belongs to a

complexity class is the reduction?

 Given a problem 𝐴 we transform the instance 𝑝1 of problem 𝐴 to the

instance 𝑝2 of problem 𝐵, such that a solution to 𝑝2 to provide a solution

to 𝑝1 (i.e., Α ≤ Β or Α→Β).

𝑻𝑺𝑷 ∈ 𝑵𝑷 − 𝑪𝒐𝒎𝒑𝒍𝒆𝒕𝒆

PATHS AND CYCLES …

 The Traveling Salesman Problem

202

• Reduction:

The most important method (tool) to prove that a problem P belongs to a

complexity class is the reduction?

𝚨 ≤ 𝚩 or 𝚨→𝚩 (R reduction)

 If 𝑝1 is a “𝑌𝐸𝑆” instance of problem 𝐴, then the 𝑅 reduction will

produce a “𝑌𝐸𝑆” instance 𝑝2 (i.e., 𝑝2 = 𝑅(𝑝1)) of problem 𝐵.

 If 𝑝1 is a “𝑁𝑂” instance of problem 𝐴, then the 𝑅 reduction will

produce a “𝑁𝑂” instance 𝑝2 (i.e., 𝑝2 = 𝑅(𝑝1)) of problem 𝐵.

 Utilizing set-notation we should prove that the 𝑅 reduction is of

polynomial time and that 𝑝1 ∈ 𝐴 𝑖𝑓𝑓 𝑝2 ∈ 𝐵 (𝐴 and 𝐵 are sets of

instances having the property 𝑃, i.e., “𝑌𝐸𝑆” - satisfiability of 𝑃)

 Then we say that the problem A is reduced to B, or equivalently that we

can utilize the solution of B to solve A.

PATHS AND CYCLES …

 The Traveling Salesman Problem

203

• Reduction:

The most important method (tool) to prove that a problem P belongs to a

complexity class is the reduction?

𝚨 ≤ 𝚩 or 𝚨→𝚩 (R reduction)

 Lemma: If problem A is reduced to B in polynomial time, and problem

B can be solved in polynomial time, then problem A can be solved in

polynomial time.

𝑹
𝑹(𝒑𝟏) = 𝒑𝟐𝒑𝟏

PATHS AND CYCLES …

 The Traveling Salesman Problem

204

• Reduction:

The most important method (tool) to prove that a problem P belongs to a

complexity class is the reduction?

𝚨 ≤ 𝚩 or 𝚨→𝚩 (R reduction)

 Lemma: If problem A is reduced to B in polynomial time, and problem

B can be solved in polynomial time, then problem A can be solved in

polynomial time.

𝑩

𝒀𝑬𝑺
𝒑𝟐

𝑵𝑶

PATHS AND CYCLES …

 The Traveling Salesman Problem

205

• Reduction:

The most important method (tool) to prove that a problem P belongs to a

complexity class is the reduction?

𝚨 ≤ 𝚩 or 𝚨→𝚩 (R reduction)

 Lemma: If problem A is reduced to B in polynomial time, and problem

B can be solved in polynomial time, then problem A can be solved in

polynomial time.

𝑩

𝒀𝑬𝑺

𝑵𝑶

𝑹
𝑹(𝒑𝟏) = 𝒑𝟐𝒑𝟏

𝑨

PATHS AND CYCLES …

 The Traveling Salesman Problem

206

• Reduction:

The most important method (tool) to prove that a problem P belongs to a

complexity class is the reduction?

𝚨 ≤ 𝚩 or 𝚨→𝚩 (R reduction)

 Reversing the Lemma: If problem A is reduced to B in polynomial time,

and problem A can be solved in exponential time, then problem B

should be solved in exponential time.

 This form of reduction we will deploy in order to prove that many

problems of graph theory, like TSP in our case, are hard to be solved.

PATHS AND CYCLES …

 The Traveling Salesman Problem

207

• Theorem (TSP ∈ NP-Comlpete):

Given a complete undirected graph 𝐺 , with weighted edges 𝑤𝑖𝑗 ∈

𝑁, ∀ 𝑖, 𝑗 ∈ 𝐸 𝐺 and a number 𝑘 ∈ 𝑁, find if there exists a Hamiltonian

cycle 𝑊 in 𝐺, such that the sum of the weights on the edges to be ≤ 𝑘 ?

i,j ∈W

𝑤𝑖𝑗 ≤ 𝑘

1. The TSP problem belongs to NP class

2. There exists a known to be NP-Complete problem 𝐴 and 𝐴 ≤ 𝑇𝑆𝑃

PATHS AND CYCLES …

 The Traveling Salesman Problem

208

1. The TSP problem belongs to NP class

• We will construct a polynomial verifier

• The verifier (i.e., an algorithm for the problem) has as input a weighted

graph 𝐺 and an integer number 𝑘, while the certificate is a cycle 𝐶.

1. First, the cycle has to be checked if indeed is Hamiltonian

2. If not, then it returns “NO” and terminates

3. Else, it checks if the sum of the weights of 𝐶’s edges is ≤ 𝑘

1. If it is not truth, then it returns “NO” and terminates,

2. Else, it returns “YES”

• The steps followed in the verifier are implemented in polynomial time.

PATHS AND CYCLES …

 The Traveling Salesman Problem

209

1. The TSP problem belongs to NP class

• We will construct a polynomial verifier

• The verifier (i.e., an algorithm for the problem) has as input a weighted

graph 𝐺 and an integer number 𝑘, while the certificate is a cycle 𝐶.

1. First, the cycle has to be checked if indeed is Hamiltonian

2. If not, then it returns “NO” and terminates

3. Else, it checks if the sum of the weights of 𝐶’s edges is ≤ 𝑘

1. If it is not truth, then it returns “NO” and terminates,

2. Else, it returns “YES”

PATHS AND CYCLES …

 The Traveling Salesman Problem

210

1. The TSP problem belongs to NP class

• We will construct a polynomial verifier

• The verifier (i.e., an algorithm for the problem) has as input a weighted

graph 𝐺 and an integer number 𝑘, while the certificate is a cycle 𝐶.

1. First, the cycle has to be checked if indeed is Hamiltonian

2. If not, then it returns “NO” and terminates

3. Else, it checks if the sum of the weights of 𝐶’s edges is ≤ 𝑘

1. If it is not truth, then it returns “NO” and terminates,

2. Else, it returns “YES”

PATHS AND CYCLES …

 The Traveling Salesman Problem

211

1. The TSP problem belongs to NP class

• We will construct a polynomial verifier

• The verifier (i.e., an algorithm for the problem) has as input a weighted

graph 𝐺 and an integer number 𝑘, while the certificate is a cycle 𝐶.

1. First, the cycle has to be checked if indeed is Hamiltonian

2. If not, then it returns “NO” and terminates

3. Else, it checks if the sum of the weights of 𝐶’s edges is ≤ 𝑘

1. If it is not truth, then it returns “NO” and terminates,

2. Else, it returns “YES”

PATHS AND CYCLES …

 The Traveling Salesman Problem

212

1. The TSP problem belongs to NP class

• We will construct a polynomial verifier

• The verifier (i.e., an algorithm for the problem) has as input a weighted

graph 𝐺 and an integer number 𝑘, while the certificate is a cycle 𝐶.

1. First, the cycle has to be checked if indeed is Hamiltonian

2. If not, then it returns “NO” and terminates

3. Else, it checks if the sum of the weights of 𝐶’s edges is ≤ 𝑘

1. If it is not truth, then it returns “NO” and terminates,

2. Else, it returns “YES”

PATHS AND CYCLES …

 The Traveling Salesman Problem

213

1. The TSP problem belongs to NP class

• We will construct a polynomial verifier

• The verifier (i.e., an algorithm for the problem) has as input a weighted

graph 𝐺 and an integer number 𝑘, while the certificate is a cycle 𝐶.

1. First, the cycle has to be checked if indeed is Hamiltonian

2. If not, then it returns “NO” and terminates

3. Else, it checks if the sum of the weights of 𝑪’s edges is ≤ 𝒌

1. If it is not truth, then it returns “NO” and terminates,

2. Else, it returns “YES”

PATHS AND CYCLES …

 The Traveling Salesman Problem

214

1. The TSP problem belongs to NP class

• We will construct a polynomial verifier

• The verifier (i.e., an algorithm for the problem) has as input a weighted

graph 𝐺 and an integer number 𝑘, while the certificate is a cycle 𝐶.

1. First, the cycle has to be checked if indeed is Hamiltonian

2. If not, then it returns “NO” and terminates

3. Else, it checks if the sum of the weights of 𝑪’s edges is ≤ 𝒌

1. If it is not truth, then it returns “NO” and terminates,

2. Else, it returns “YES”

PATHS AND CYCLES …

 The Traveling Salesman Problem

215

2. There exists a known to be NP-Complete problem 𝐴 and 𝐴 ≤ 𝑇𝑆𝑃

• We select 𝐴 =Hamiltonian cycle (HAMC)

• Hamiltonian cycle in a simple connected graph 𝐺 is a closed path that

passes from each vertex of 𝐺.

• HAMC ∈ NP-Complete

• HAMC ≤ TSP

PATHS AND CYCLES …

 The Traveling Salesman Problem

216

2. There exists a known to be NP-complete problem 𝐴 and 𝐴 ≤ 𝑇𝑆𝑃

• Let 𝑝1 an instance of the HAMC by the graph 𝐺 = (𝑉, 𝐸)

• We construct a new complete weighted graph G’ = (𝑉’, 𝐸’): 𝑉’ = 𝑉 and

define a weight function 𝑤: 𝐸’ → {1,2} such that

∀(𝑖, 𝑗) ∈ 𝐸′, 𝑤𝑖𝑗 =
1, 𝑖𝑓 𝑖, 𝑗 ∈ 𝐸

2, 𝑖𝑓 𝑖, 𝑗 ∉ 𝐸

• Finally we set 𝑘 = |𝑉|

• In order to complete the reduction we should prove that the graph 𝐺

has HAMC 𝑖𝑓𝑓 the produced graph 𝐺’ has HAMC ≤ 𝐾 = |𝑉|

PATHS AND CYCLES …

 The Traveling Salesman Problem

217

2. The graph 𝐺 has HAMC 𝑖𝑓𝑓 the produce graph 𝐺’ has HAMC ≤ 𝐾=|𝑉|

(⟹)

• Let 𝐺 has a Hamiltonian cycle 𝑊.

• Then, 𝐺’ has also the Hamiltonian cycle 𝑊 since it has the same vertex

set with 𝐺 while 𝐸 ⊆ 𝐸’.

• Since all the vertices of 𝑊 in 𝐺’ have weight 1 it follows that cycle

𝑊 has weight in 𝐺’ equal to 𝑘 = |𝑉|.

PATHS AND CYCLES …

 The Traveling Salesman Problem

218

2. The graph 𝐺 has HAMC 𝑖𝑓𝑓 the produce graph 𝐺’ has HAMC ≤ 𝐾=|𝑉|

(⟸)

• Let 𝐺 has a Hamiltonian cycle 𝑊 with weight ≤ 𝑘 = |𝑉|.

• Then, the cycle 𝑊 can not include any of the edges of 𝐸’ that do not

belong to 𝐸, as they have weight 2 and hence the |𝑉| edges of 𝑊 can

not have total weight ≤ |𝑉|.

• Hence, the initial graph 𝐺 has a Hamiltonian cycle 𝑊

PATHS AND CYCLES …

 The Traveling Salesman Problem

219

2. The correctness of the reduction HAMC ≤ TSP has been proven.

• Now it lefts to prove that the complexity of the reduction is polynomial.

PATHS AND CYCLES …

 The Traveling Salesman Problem

220

2. The correctness of the reduction HAMC ≤ TSP has been proven.

• Now it lefts to prove that the complexity of the reduction is polynomial.

• Indeed the graph 𝐺’ can be produced from 𝐺 in polynomial time!

• Hence, since

o 𝑇𝑆𝑃 ∈ 𝑁𝑃 and

o 𝐻𝐴𝑀𝐶 ≤ 𝑇𝑆𝑃

⟹ 𝑇𝑆𝑃 ∈ 𝑁𝑃 − 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

PATHS AND CYCLES …

 Decision TSP & Optimization TSP

221

• Decision TSP: Given a complete undirected graph 𝐺, with weighted edges

𝑤𝑖𝑗 ∈ 𝑁, ∀ 𝑖, 𝑗 ∈ 𝐸 𝐺 and a number 𝑘 ∈ 𝑁, find if there exists a

Hamiltonian cycle 𝑊 in 𝐺, such that the sum of the weights on the edges to

be ≤ 𝑘 ?

i,j ∈W

𝑤𝑖𝑗 ≤ 𝑘

• Optimization TSP: Given a complete undirected graph 𝐺, with weighted

edges 𝑤𝑖𝑗 ∈ 𝑁, ∀ 𝑖, 𝑗 ∈ 𝐸(𝐺), find a Hamiltonian cycle 𝑊 in 𝐺, such

that the sum of the weights on the edges to be minimum?

min

i,j ∈W

𝑤𝑖𝑗

PATHS AND CYCLES …

 Decision TSP & Optimization TSP

222

• Decision TSP: Given a complete undirected graph 𝐺, with weighted edges

𝑤𝑖𝑗 ∈ 𝑁, ∀ 𝑖, 𝑗 ∈ 𝐸 𝐺 and a number 𝑘 ∈ 𝑁, find if there exists a

Hamiltonian cycle 𝑊 in 𝐺, such that the sum of the weights on the edges to

be ≤ 𝑘 ?

i,j ∈W

𝑤𝑖𝑗 ≤ 𝑘

• The Traveling Salesman Problem has been proven to be NP-Complete.

• There does not exist an algorithm that solves the Decision TSP in

polynomial time, and hence neither for the Optimization TSP.

PATHS AND CYCLES …

 Decision TSP & Optimization TSP

223

• Decision TSP: Given a complete undirected graph 𝐺, with weighted edges

𝑤𝑖𝑗 ∈ 𝑁, ∀ 𝑖, 𝑗 ∈ 𝐸 𝐺 and a number 𝑘 ∈ 𝑁, find if there exists a

Hamiltonian cycle 𝑊 in 𝐺, such that the sum of the weights on the edges to

be ≤ 𝑘 ?

i,j ∈W

𝑤𝑖𝑗 ≤ 𝑘

• The Traveling Salesman Problem has been proven to be NP-complete.

• There does not exist an algorithm that solves the Decision TSP in

polynomial time, and hence neither for the Optimization TSP.

• Why?

PATHS AND CYCLES …

 Decision TSP & Optimization TSP

224

• Decision TSP: Given a complete undirected graph 𝐺, with weighted edges

𝑤𝑖𝑗 ∈ 𝑁, ∀ 𝑖, 𝑗 ∈ 𝐸 𝐺 and a number 𝑘 ∈ 𝑁, find if there exists a

Hamiltonian cycle 𝑊 in 𝐺, such that the sum of the weights on the edges to

be ≤ 𝑘 ?

i,j ∈W

𝑤𝑖𝑗 ≤ 𝑘

• The Traveling Salesman Problem has been proven to be NP-complete.

• There does not exist an algorithm that solves the Decision TSP in

polynomial time, and hence neither for the Optimization TSP.

• If we design an algorithm that solves the Decision TSP in

polynomial time, would it solve the Optimization TSP in polynomial time

too?

PATHS AND CYCLES …

 Decision TSP & Optimization TSP

225

• Decision TSP: Given a complete undirected graph 𝐺, with weighted edges

𝑤𝑖𝑗 ∈ 𝑁, ∀ 𝑖, 𝑗 ∈ 𝐸 𝐺 and a number 𝑘 ∈ 𝑁, find if there exists a

Hamiltonian cycle 𝑊 in 𝐺, such that the sum of the weights on the edges to

be ≤ 𝑘 ?

i,j ∈W

𝑤𝑖𝑗 ≤ 𝑘

• Having an algorithm that solves the Decision TSP in polynomial time, would

it solve the Optimization TSP in polynomial time too?

• If we had an algorithm let 𝐴𝑑 for the Decision TSP problem, then it would

return “YES” if there would exist Hamiltonian cycle of weight ≤ 𝑘, or it

would return “NO” otherwise.

PATHS AND CYCLES …

 Decision TSP & Optimization TSP

226

• Decision TSP: Given a complete undirected graph 𝐺, with weighted edges

𝑤𝑖𝑗 ∈ 𝑁, ∀ 𝑖, 𝑗 ∈ 𝐸 𝐺 and a number 𝑘 ∈ 𝑁, find if there exists a

Hamiltonian cycle 𝑊 in 𝐺, such that the sum of the weights on the edges to

be ≤ 𝑘 ?

i,j ∈W

𝑤𝑖𝑗 ≤ 𝑘

• Having an algorithm that solves the Decision TSP in polynomial time, would

it solve the Optimization TSP in polynomial time too?

• Let M the maximum weight of the edges of graph 𝐺, we search the value of

𝑘 in the range [0, 𝑛𝑀] and apply the algorithm 𝐴𝑑

PATHS AND CYCLES …

 Decision TSP & Optimization TSP

227

• Decision TSP: Given a complete undirected graph 𝐺, with weighted edges

𝑤𝑖𝑗 ∈ 𝑁, ∀ 𝑖, 𝑗 ∈ 𝐸 𝐺 and a number 𝑘 ∈ 𝑁, find if there exists a

Hamiltonian cycle 𝑊 in 𝐺, such that the sum of the weights on the edges to

be ≤ 𝑘 ?

i,j ∈W

𝑤𝑖𝑗 ≤ 𝑘

• Having an algorithm that solves the Decision TSP in polynomial time, would

it solve the Optimization TSP in polynomial time too?

• Algorithm 𝐴𝑜𝑝𝑡 (Linear Search)

[𝟎, 1, 2, 3, … ,𝑚 − 1,𝑚 ,𝑚 + 1, … , 𝑛𝑀 − 1, 𝑛𝑀]

• 𝑘 = 0, If 𝐴𝑑 returns “NO”, then 𝑘 + +

PATHS AND CYCLES …

 Decision TSP & Optimization TSP

228

• Decision TSP: Given a complete undirected graph 𝐺, with weighted edges

𝑤𝑖𝑗 ∈ 𝑁, ∀ 𝑖, 𝑗 ∈ 𝐸 𝐺 and a number 𝑘 ∈ 𝑁, find if there exists a

Hamiltonian cycle 𝑊 in 𝐺, such that the sum of the weights on the edges to

be ≤ 𝑘 ?

i,j ∈W

𝑤𝑖𝑗 ≤ 𝑘

• Having an algorithm that solves the Decision TSP in polynomial time, would

it solve the Optimization TSP in polynomial time too?

• Algorithm 𝐴𝑜𝑝𝑡 (Linear Search)

[0, 𝟏, 2, 3, … ,𝑚 − 1,𝑚 ,𝑚 + 1, … , 𝑛𝑀 − 1, 𝑛𝑀]

• 𝑘 = 1, If 𝐴𝑑 returns “NO”, then 𝑘 + +

PATHS AND CYCLES …

 Decision TSP & Optimization TSP

229

• Decision TSP: Given a complete undirected graph 𝐺, with weighted edges

𝑤𝑖𝑗 ∈ 𝑁, ∀ 𝑖, 𝑗 ∈ 𝐸 𝐺 and a number 𝑘 ∈ 𝑁, find if there exists a

Hamiltonian cycle 𝑊 in 𝐺, such that the sum of the weights on the edges to

be ≤ 𝑘 ?

i,j ∈W

𝑤𝑖𝑗 ≤ 𝑘

• Having an algorithm that solves the Decision TSP in polynomial time, would

it solve the Optimization TSP in polynomial time too?

• Algorithm 𝐴𝑜𝑝𝑡 (Linear Search)

[0, 1, 𝟐, 3, … ,𝑚 − 1,𝑚 ,𝑚 + 1, … , 𝑛𝑀 − 1, 𝑛𝑀]

• 𝑘 = 2, If 𝐴𝑑 returns “NO”, then 𝑘 + +

PATHS AND CYCLES …

 Decision TSP & Optimization TSP

230

• Decision TSP: Given a complete undirected graph 𝐺, with weighted edges

𝑤𝑖𝑗 ∈ 𝑁, ∀ 𝑖, 𝑗 ∈ 𝐸 𝐺 and a number 𝑘 ∈ 𝑁, find if there exists a

Hamiltonian cycle 𝑊 in 𝐺, such that the sum of the weights on the edges to

be ≤ 𝑘 ?

i,j ∈W

𝑤𝑖𝑗 ≤ 𝑘

• Having an algorithm that solves the Decision TSP in polynomial time, would

it solve the Optimization TSP in polynomial time too?

• Algorithm 𝐴𝑜𝑝𝑡 (Linear Search)

[0, 1, 2, 3, … ,𝒎 − 𝟏,𝑚 ,𝑚 + 1,… , 𝑛𝑀 − 1, 𝑛𝑀]

• 𝑘 = 𝑚 − 1, If 𝐴𝑑 returns “NO”, then 𝑘 + +

PATHS AND CYCLES …

 Decision TSP & Optimization TSP

231

• Decision TSP: Given a complete undirected graph 𝐺, with weighted edges

𝑤𝑖𝑗 ∈ 𝑁, ∀ 𝑖, 𝑗 ∈ 𝐸 𝐺 and a number 𝑘 ∈ 𝑁, find if there exists a

Hamiltonian cycle 𝑊 in 𝐺, such that the sum of the weights on the edges to

be ≤ 𝑘 ?

i,j ∈W

𝑤𝑖𝑗 ≤ 𝑘

• Having an algorithm that solves the Decision TSP in polynomial time, would

it solve the Optimization TSP in polynomial time too?

• Algorithm 𝐴𝑜𝑝𝑡 (Linear Search)

[0, 1, 2, 3, … ,𝑚 − 1,𝒎 ,𝑚 + 1,… , 𝑛𝑀 − 1, 𝑛𝑀]

• 𝑘 = 𝑚, If 𝐴𝑑 returns “YES”, then 𝑒𝑥𝑖𝑡

PATHS AND CYCLES …

 Decision TSP & Optimization TSP

232

• Decision TSP: Given a complete undirected graph 𝐺, with weighted edges

𝑤𝑖𝑗 ∈ 𝑁, ∀ 𝑖, 𝑗 ∈ 𝐸 𝐺 and a number 𝑘 ∈ 𝑁, find if there exists a

Hamiltonian cycle 𝑊 in 𝐺, such that the sum of the weights on the edges to

be ≤ 𝑘 ?

i,j ∈W

𝑤𝑖𝑗 ≤ 𝑘

• Having an algorithm that solves the Decision TSP in polynomial time, would

it solve the Optimization TSP in polynomial time too?

• Algorithm 𝐴𝑜𝑝𝑡 (Linear Search)

[0, 1, 2, 3, … ,𝑚 − 1,𝑚 ,𝑚 + 1,… , 𝑛𝑀 − 1, 𝑛𝑀]

• Algorithm 𝐴𝑑 will be executed at most 𝑂(𝑛𝑀) times (worst case)

Hence, if 𝐴𝑑 is polynomial then 𝐴𝑜𝑝𝑡 is polynomial too.

PATHS AND CYCLES …

 Decision TSP & Optimization TSP

233

• Decision TSP: Given a complete undirected graph 𝐺, with weighted edges

𝑤𝑖𝑗 ∈ 𝑁, ∀ 𝑖, 𝑗 ∈ 𝐸 𝐺 and a number 𝑘 ∈ 𝑁, find if there exists a

Hamiltonian cycle 𝑊 in 𝐺, such that the sum of the weights on the edges to

be ≤ 𝑘 ?

i,j ∈W

𝑤𝑖𝑗 ≤ 𝑘

• Having an algorithm that solves the Decision TSP in polynomial time, would

it solve the Optimization TSP in polynomial time too?

• Algorithm 𝐴𝑜𝑝𝑡 (Binary Search)

[𝟎, 1, 2, 3, … ,𝑚 − 1,𝑚 ,𝑚 + 1,… , 𝑛𝑀 − 1, 𝒏𝑴]

• 𝐾 = (𝑟𝑖𝑔ℎ𝑡 − 𝑙𝑒𝑓𝑡)/2 , …

PATHS AND CYCLES …

 Decision TSP & Optimization TSP

234

• Decision TSP: Given a complete undirected graph 𝐺, with weighted edges

𝑤𝑖𝑗 ∈ 𝑁, ∀ 𝑖, 𝑗 ∈ 𝐸 𝐺 and a number 𝑘 ∈ 𝑁, find if there exists a

Hamiltonian cycle 𝑊 in 𝐺, such that the sum of the weights on the edges to

be ≤ 𝑘 ?

i,j ∈W

𝑤𝑖𝑗 ≤ 𝑘

• Having an algorithm that solves the Decision TSP in polynomial time, would

it solve the Optimization TSP in polynomial time too?

• Algorithm 𝐴𝑜𝑝𝑡 (Binary Search)

[𝟎, 1, 2, 3, … ,𝑚 − 1,𝑚 ,𝑚 + 1,… , 𝑛𝑀 − 1, 𝒏𝑴]

• 𝐾 = (𝑟𝑖𝑔ℎ𝑡 − 𝑙𝑒𝑓𝑡)/2 , … Algorithm 𝐴𝑑 in worst cast will be executed

𝑂(𝑙𝑜𝑔𝑛𝑀) times, and hence if 𝐴𝑑 is polynomial, then 𝐴𝑜𝑝𝑡 will be

polynomial too.

PATHS AND CYCLES …

 Decision TSP & Optimization TSP

235

• Decision TSP: Given a complete undirected graph 𝐺, with weighted edges

𝑤𝑖𝑗 ∈ 𝑁, ∀ 𝑖, 𝑗 ∈ 𝐸 𝐺 and a number 𝑘 ∈ 𝑁, find if there exists a

Hamiltonian cycle 𝑊 in 𝐺, such that the sum of the weights on the edges to

be ≤ 𝑘 ?

i,j ∈W

𝑤𝑖𝑗 ≤ 𝑘

• The performance of the Optimization TSP is close enough to the

performance of the Decision TSP.

PATHS AND CYCLES …

 3SAT ∈ NP-complete (SAT ≤ 3SAT)

236

• SAT Problem: We are given a Boolean formula in conjunctive form:

(𝒙 ∨ 𝒚 ∨ 𝒛 ∨ 𝒘) ∧ (𝒙 ∨ 𝒚) ∧ (𝒛 ∨ 𝒙 ∨ 𝒘 ∨ 𝒑 ∨ 𝒚) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛)

and we need to find a satisfying truth assignment (or to claim that there does

not exist any)

• 3SAT Problem:

(𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒘 ∨ 𝒚) ∧ (𝒚 ∨ 𝒛) ∧ (𝒑 ∨ 𝒙) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛)

PATHS AND CYCLES …

 3SAT ∈ NP-complete (SAT ≤ 3SAT)

237

• SAT Problem: We are given a Boolean formula in conjunctive form:

(𝒙 ∨ 𝒚 ∨ 𝒛 ∨ 𝒘) ∧ (𝒙 ∨ 𝒚) ∧ (𝒛 ∨ 𝒙 ∨ 𝒘 ∨ 𝒑 ∨ 𝒚) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛)

and we need to find a satisfying truth assignment (or to claim that there does

not exist any)

• 3SAT Problem:

(𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚)

• Independent-Set: We are given a graph of n vertices and an integer k.

We are asked to find an I.S. of k

vertices, where each pair of vertices in

the set are disjoint, or to point out that

there does not exist such a set.

3SAT ≤ IS

PATHS AND CYCLES …

 3SAT ∈ NP-complete (3SAT ≤ Independent Set)

238

• 3SAT Problem:

(𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚)

• Independent-Set:

• Correlation between Boolean Logic and Graphs

• In a satisfying truth assignment, an element from each term should

be true, and hence since 𝑥 could be chosen to be true in a term we

are not allowed to set 𝑥 to be true in another term.

PATHS AND CYCLES …

 3SAT ∈ NP-complete (3SAT ≤ Independent Set)

239

• 3SAT Problem:

(𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚)

• Independent-Set:

• Correlation between Boolean Logic and Graphs

PATHS AND CYCLES …

 3SAT ∈ NP-complete (3SAT ≤ Independent Set)

240

• 3SAT Problem and Independent Set:

(𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚)

• In the produced graph, let 𝐺, each Independent Set contains at most

one element from each triangle/term.

PATHS AND CYCLES …

 3SAT ∈ NP-complete (3SAT ≤ Independent Set)

241

• 3SAT Problem and Independent Set:

(𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚)

• In the produced graph, let 𝐺, each Independent Set contains at most

one element from each triangle/term.

PATHS AND CYCLES …

 3SAT ∈ NP-complete (3SAT ≤ Independent Set)

242

• 3SAT Problem and Independent Set:

(𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚)

• In the produced graph, let 𝐺, each Independent Set contains at most

one element from each triangle/term.

PATHS AND CYCLES …

 3SAT ∈ NP-complete (3SAT ≤ Independent Set)

243

• 3SAT Problem and Independent Set:

(𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚)

• In the produced graph, let 𝐺, each Independent Set contains at most

one element from each triangle/term.

PATHS AND CYCLES …

 3SAT ∈ NP-complete (3SAT ≤ Independent Set)

244

• 3SAT Problem and Independent Set:

(𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚)

• In the produced graph, let 𝐺, each Independent Set contains at most

one element from each triangle/term.

PATHS AND CYCLES …

 3SAT ∈ NP-complete (3SAT ≤ Independent Set)

245

• 3SAT Problem and Independent Set:

(𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚)

• In the produced graph, let 𝐺, each Independent Set contains at most

one element from each triangle/term.

PATHS AND CYCLES …

 3SAT ∈ NP-complete (3SAT ≤ Independent Set)

246

• 3SAT Problem and Independent Set:

(𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚)

• In the produced graph, let 𝐺, each Independent Set contains at most

one element from each triangle/term.

• In order to set an option from each triangle/term, we set 𝑘 =the

cardinality of the terms.

• It is needed a method that would deter us from selecting opposite

elements, i.e., 𝑥 and 𝑥.

PATHS AND CYCLES …

 3SAT ∈ NP-complete (3SAT ≤ Independent Set)

247

• 3SAT Problem and Independent Set:

(𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚)

PATHS AND CYCLES …

 3SAT ∈ NP-complete (3SAT ≤ Independent Set)

248

• 3SAT Problem and Independent Set:

(𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚)

PATHS AND CYCLES …

 3SAT ∈ NP-complete (3SAT ≤ Independent Set)

249

• 3SAT Problem and Independent Set:

(𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚)

Given an instance 𝐼 of problem 3SAT, construct an instance (𝐺, 𝑘) of

the problem Independent Set.

PATHS AND CYCLES …

 3SAT ∈ NP-complete (3SAT ≤ Independent Set)

250

• 3SAT Problem and Independent Set:

(𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚)

𝑥 = 𝑓𝑎𝑙𝑠𝑒, 𝑦 = 𝑡𝑟𝑢𝑒, 𝑧 = 𝑡𝑟𝑢𝑒

Given an instance 𝐼 of problem 3SAT, construct an instance (𝐺, 𝑘) of

the problem Independent Set.

PATHS AND CYCLES …

 3SAT ∈ NP-complete (3SAT ≤ Independent Set)

251

• 3SAT Problem and Independent Set:

(𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚)

𝑥 = 𝑓𝑎𝑙𝑠𝑒, 𝑦 = 𝑓𝑎𝑙𝑠𝑒, 𝑧 = 𝑡𝑟𝑢𝑒

Given an instance 𝐼 of problem 3SAT, construct an instance (𝐺, 𝑘) of

the problem Independent Set.

PATHS AND CYCLES …

 3SAT ∈ NP-complete (3SAT ≤ Independent Set)

252

• 3SAT Problem and Independent Set:

(𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚)

𝑥 = 𝑓𝑎𝑙𝑠𝑒, 𝑦 = 𝑓𝑎𝑙𝑠𝑒, 𝑧 = 𝑡𝑟𝑢𝑒

Given an instance 𝐼 of problem 3SAT, construct an instance (𝐺, 𝑘) of

the problem Independent Set.

Polynomial Time

PATHS AND CYCLES …

 3SAT ∈ NP-complete (3SAT ≤ Independent Set)

253

• 3SAT Problem and Independent Set:

We should prove that 3SAT ⇔ IS

(𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚)

• (⟸) Given an Independent Set 𝑆 with 𝑘 vertices in the graph 𝐺, we can

always get a satisfying truth assignment in 𝐼.

• (⟹) If the graph 𝐺 has no Independent Set S of size 𝑘, then the logical

formula 𝐼 is not satisfiable.

PATHS AND CYCLES …

 3SAT ∈ NP-complete (3SAT ≤ Independent Set)

254

• 3SAT Problem and Independent Set:

We should prove that 3SAT ⇔ IS

(𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚)

• (⟸) Given an Independent Set 𝑆 with 𝑘 vertices in the graph 𝐺, we can

always get a satisfying truth assignment in 𝐼.

For each variable 𝑥, set 𝑆 contains no vertices with labels 𝑥 and 𝑥. We assign

𝑥 = 𝑡𝑟𝑢𝑒 if s contains vertex with label 𝑥 and 𝑥 = 𝑓𝑎𝑙𝑠𝑒 if 𝑆 contains

vertex with label 𝑥. Since |𝑆| = 𝑘, it should contain a vertex per term. Such

an assignment satisfies all terms.

PATHS AND CYCLES …

 3SAT ∈ NP-complete (3SAT ≤ Independent Set)

255

• 3SAT Problem and Independent Set:

We should prove that 3SAT ⇔ IS

(𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚)

• (⟹) If the graph 𝐺 has no Independent Set S of size 𝑘, then the logical

formula 𝐼 is not satisfiable.

It is adequate to prove that if the logical formula 𝐼 has a satisfying truth

assignment, then 𝐺 has an Independent Set 𝑆 of size 𝑘. Hence, for each

term of the 3SAT we select an element which its value in the satisfying truth

assignment is true and add the corresponding vertex in 𝑆 .

PATHS AND CYCLES …

 Approximation Algorithms on TSP

256

• Heuristic Sub-Optimal Solutions:

1. Greedy TSP with DFS

2. Greedy TSP with Bilateral Path Extension (Nearest Insertion)

3. Greedy TSP with Closest Insertion (Cheapest Insertion)

4. TSP with Minimum Spanning Tree

5. TSP with Vertex Substitution

PATHS AND CYCLES …

 Approximation Algorithms on TSP

257

• Heuristic Sub-Optimal Solutions:

1. Greedy TSP with DFS

2. Greedy TSP with Bilateral Path Extension (Nearest Insertion)

3. Greedy TSP with Closest Insertion (Cheapest Insertion)

4. TSP with Minimum Spanning Tree

5. TSP with Vertex Substitution

PATHS AND CYCLES …

 Approximation Algorithms on TSP

258

• Heuristic Sub-Optimal Solutions:

Greedy TSP with DFS

1) Select a random vertex 𝑣0
2) set 𝑖 ← 1 and 𝑙(𝑣) ← 0
3) while (∃ unmarked vertices)

4) select the edge with the less weight, from the edges that

connect vertex 𝑣 with an unmarked vertex 𝑤.

5) set 𝑙(𝑤) ← 𝑖 and 𝑣 ← 𝑤.

PATHS AND CYCLES …

 Approximation Algorithms on TSP

259

• Heuristic Sub-Optimal Solutions:

1. Greedy TSP with DFS

2. Greedy TSP with Bilateral Path Extension (Nearest Insertion)

3. Greedy TSP with Closest Insertion (Cheapest Insertion)

4. TSP with Minimum Spanning Tree

5. TSP with Vertex Substitution

PATHS AND CYCLES …

 Approximation Algorithms on TSP

260

• Heuristic Sub-Optimal Solutions:

Greedy TSP with Bilateral Path Extension (Nearest Insertion)

1) Set 𝑖 ← 1.

2) Select a random peak 𝑣0 and consider the path 𝑃𝑖 = 𝑣0
3) If (𝑖 = 𝑛)

𝐶 = 𝑃𝑛 is a Hamilton circle,

4) Else

select the lightest edge e adjacent to one of the two terminal vertices

of 𝑃𝑖 such that no cycle with the peaks of 𝑃𝑖 to be created.

5) Construct the path 𝑃𝑖+1 = (𝑃𝑖 ∪ 𝑒)

6) Set 𝑖 ← 𝑖 + 1.

7) Goto step 3

PATHS AND CYCLES …

 Approximation Algorithms on TSP

261

• Heuristic Sub-Optimal Solutions:

Greedy TSP with Bilateral Path Extension (Nearest Insertion)

Path Weight

3-6 2

3-6-5 38

3-6-5-4 59

3-6-5-4-2 129

3-6-5-4-2-1 142

3-6-5-4-2-1-3 193

PATHS AND CYCLES …

 Approximation Algorithms on TSP

262

• Heuristic Sub-Optimal Solutions:

1. Greedy TSP with DFS

2. Greedy TSP with Bilateral Path Extension (Nearest Insertion)

3. Greedy TSP with Closest Insertion (Cheapest Insertion)

4. TSP with Minimum Spanning Tree

5. TSP with Vertex Substitution

PATHS AND CYCLES …

 Approximation Algorithms on TSP

263

• Heuristic Sub-Optimal Solutions:

Greedy TSP with Closest Insertion (Cheapest Insertion)

1) Set 𝑖 ← 1.

2) Select a random peak 𝑣0 and consider the path 𝐶𝑖 = 𝑣0
3) If (𝑖 = 𝑛)

𝐶 = 𝐶𝑛 is a Hamilton circle

4) Else

search for a vertex 𝑣𝑖 that ∉ in the circle 𝐶𝑖 and are closest to a pair

in sequential vertices 𝑣𝑖 , 𝑣𝑖+1 ∈ 𝐶𝑖 .
5) Construct cycle 𝐶𝑖+1 inserting the vertex 𝑣𝑖 between 𝑣𝑖 and 𝑣𝑖+1.
6) Set 𝑖 ← 𝑖 + 1.

7) Goto step 3

PATHS AND CYCLES …

 Approximation Algorithms on TSP

264

• Heuristic Sub-Optimal Solutions:

Greedy TSP with Closest Insertion (Cheapest Insertion)

Path Weight

3 …

3-6-3 …

3-6-5-3 …

3-6-5-4-3 …

3-6-1-5-4-3 …

3-6-2-1-5-4-3 192

PATHS AND CYCLES …

 Approximation Algorithms on TSP

265

• Heuristic Sub-Optimal Solutions:

1. Greedy TSP with DFS

2. Greedy TSP with Bilateral Path Extension (Nearest Insertion)

3. Greedy TSP with Closest Insertion (Cheapest Insertion)

4. TSP with Minimum Spanning Tree

5. TSP with Vertex Substitution

PATHS AND CYCLES …

 Approximation Algorithms on TSP

266

• Heuristic Sub-Optimal Solutions:

TSP with Minimum Spanning Tree

1) Find a minimum spanning tree 𝑇
2) Perform a Depth First Search

3) If 𝑣𝑖 , 𝑣2, … , 𝑣𝑝 is the sequence of visiting the vertices of 𝑇 from step 2,

then the Hamiltonian cycle is 𝑣𝑖 , 𝑣2, … , 𝑣𝑝, 𝑣1.

PATHS AND CYCLES …

 Approximation Algorithms on TSP

267

• Heuristic Sub-Optimal Solutions:

TSP with Minimum Spanning Tree

1) Find a minimum spanning tree 𝑇
2) Perform a Depth First Search

3) If 𝑣𝑖 , 𝑣2, … , 𝑣𝑝 is the sequence of visiting the vertices of 𝑇 from step 2,

then the Hamiltonian cycle is 𝑣𝑖 , 𝑣2, … , 𝑣𝑝, 𝑣1.

PATHS AND CYCLES …

 Approximation Algorithms on TSP

268

• Heuristic Sub-Optimal Solutions:

TSP with Minimum Spanning Tree

1) Find a minimum spanning tree 𝑇
2) Perform a Depth First Search

3) If 𝑣𝑖 , 𝑣2, … , 𝑣𝑝 is the sequence of visiting the vertices of 𝑇 from step 2,

then the Hamiltonian cycle is 𝑣𝑖 , 𝑣2, … , 𝑣𝑝, 𝑣1.

Path Weight

(3,1,2,5,4,6,3) 212

(1,2,3,5,4,6,1) 237

… …

PATHS AND CYCLES …

 Approximation Algorithms on TSP

269

• Heuristic Sub-Optimal Solutions:

1. Greedy TSP with DFS

2. Greedy TSP with Bilateral Path Extension (Nearest Insertion)

3. Greedy TSP with Closest Insertion (Cheapest Insertion)

4. TSP with Minimum Spanning Tree

5. TSP with Vertex Substitution

PATHS AND CYCLES …

 Approximation Algorithms on TSP

270

• Heuristic Sub-Optimal Solutions:

TSP with Vertex Substitution

1) Consider a Hamiltonian cycle 𝐶 = 𝑣1, 𝑣2, … , 𝑣𝑛, 𝑣1

2) ∀ 𝑖, 𝑗, ∶ 1 < 𝑖 + 1 < 𝑗 < 𝑛, obtain a new Hamiltonian cycle

𝐶𝑖,𝑗 = 𝑣1, 𝑣2, … 𝑣𝑖 , 𝑣𝑗 , 𝑣𝑗−1, … , 𝑣𝑖+1, 𝑣𝑗+1, 𝑣𝑗+2, … , 𝑣𝑛, 𝑣1 deleting the edges

(𝑣𝑖 , 𝑣𝑖+1) 𝑎𝑛𝑑 (𝑣𝑗, 𝑣𝑗+1) and adding the edges (𝑣𝑖 , 𝑣𝑗) 𝑎𝑛𝑑 (𝑣𝑖+1, 𝑣𝑗+1).

3) If (for some 𝑖, 𝑗 occurs 𝑤(𝑣𝑖 , 𝑣𝑗) + 𝑤(𝑣𝑖+1, 𝑣𝑗+1) < 𝑤(𝑣𝑖 , 𝑣𝑖+1) + 𝑤(𝑣𝑗, 𝑣𝑗+1))

set 𝐶 = 𝐶𝑖,𝑗 .

4) Goto step 2.

PATHS AND CYCLES …

 Approximation Algorithms on TSP

271

• Heuristic Sub-Optimal Solutions:

TSP with Vertex Substitution

1) Consider a Hamiltonian cycle 𝐶 = 𝑣1, 𝑣2, … , 𝑣𝑛, 𝑣1

2) ∀ 𝑖, 𝑗, ∶ 1 < 𝑖 + 1 < 𝑗 < 𝑛, obtain a new Hamiltonian cycle

𝐶𝑖,𝑗 = 𝑣1, 𝑣2, … 𝑣𝑖 , 𝑣𝑗 , 𝑣𝑗−1, … , 𝑣𝑖+1, 𝑣𝑗+1, 𝑣𝑗+2, … , 𝑣𝑛, 𝑣1 deleting the edges

(𝑣𝑖 , 𝑣𝑖+1) 𝑎𝑛𝑑 (𝑣𝑗, 𝑣𝑗+1) and adding the edges (𝑣𝑖 , 𝑣𝑗) 𝑎𝑛𝑑 (𝑣𝑖+1, 𝑣𝑗+1).

3) If (for some 𝑖, 𝑗 occurs 𝑤(𝑣𝑖 , 𝑣𝑗) + 𝑤(𝑣𝑖+1, 𝑣𝑗+1) < 𝑤(𝑣𝑖 , 𝑣𝑖+1) + 𝑤(𝑣𝑗, 𝑣𝑗+1))

set 𝐶 = 𝐶𝑖,𝑗 .

4) Goto step 2.

Path Weight

(3,4,5,6,1,2,3) 237

(3,6,5,4,1,2,3) 210

(3,6,5,4,2,1,3) 193

(3,6,1,2,4,5,3) 192

PATHS AND CYCLES …

 Infinite Graphs

272

• Vertices are points of the plane with integer coordinates, while the edges join

vertices at a distance of 1

• In infinite graphs there is no Eulerian circuit or Hamiltonian circle, but there

are corresponding paths

• An “one-way” Eulerian / Hamiltonian path is the path that starts from a

vertex and expands infinitely (space filling curve)

Peano/z-order Hilbert

PATHS AND CYCLES …

 Magic Squares

273

• The rows, columns and diagonals have an equal sum

• Magic squares algorithms (odd order):

o Bachet method (with rhombus)

PATHS AND CYCLES …

 Magic Squares

274

• The rows, columns and diagonals have an equal sum

• Magic squares algorithms (odd order):

o Bachet method (with rhombus)

o By tricking the three random numbers (eg 3,2,5)

o Replacing unnecessary numbers 3-17 in positions 1-9

o Adding the same number to each position

PATHS AND CYCLES …

 Magic Squares

275

• The rows, columns and diagonals have an equal sum

• Magic is called the graph where the sum of their inscriptions of edges that

fall on all nodes is equal

• Theorem: if a bipartite graph can be decomposed into 2

Hamiltonian circles, then the graph is magical

• Antimagic is called the graph where the sums of inscriptions of the edges

of all vertices is not equal.

• Number of magic objects (squares, dominoes, polygons, etc)

