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PATHS AND CYCLES ...

0 Walks, Trails and Paths

* A walk is a sequence of vertices and edges of a graph i.e. if we traverse a

graph then we get a walk. (Vertices and Edges can be repeated)

1—>2—>53—>54—>2—>1—>31sawalk °
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* A Trail is a walk in which no edge is repeated then we get a trail. (Vertices

can be repeated but Edges can not be repeated)

1—>3—>8—>6—>3—>2is trail

1—>3—>8—>6—>3—>2—11isaclosed trail
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0 Walks, Trails and Paths
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* A Circuit is the traversal of a graph such that not an edge is repeated but

vertex can be repeated and it is closed also 1.e. it is a closed trail. (Vertices can

be repeated, Edges can not be repeated)

1—>2—>4—>3—>56—>8—>3—11sacircuit
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0 Walks, Trails and Paths

S A ¢ et
* A Path is a trail in which neither vertices nor edges are repeated 1.e. if we

traverse a graph such that we do not repeat a vertex and nor we repeat an

edge. (Vertices can not be repeated, Edges can not be repeated).

6—>8—>3—>1—>2—>41isalPath
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0 Walks, Trails and Paths

* A Cycle 1s the traversal of a graph such that we do not repeat a vertex nor

we repeat a edge but the starting and ending vertex must be same 1.e. we
can repeat starting and ending vertex only then we get a cycle. (Vertices

can not be repeated, Edges can not be repeated) Cycle is a closed path.

1-2—>4—3—1isacycle.
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0 Walks, Trails and Paths

Walk

Vertices and Edges
can be repeated
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0 Walks, Trails and Paths
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N Vertices can be repeated but
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Vertices and Edges \ Edges can not be repeated
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can be repeated S
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0 Walks, Trails and Paths

Walk \\
\
Vertices and Edges |
can be repeated \\

Vertices can not be repeated
Edges can not be repeated

Vertices can be repeated but
Edges can not be repeated
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0 Walks, Trails and Paths

Walk \\ )
\ Vertices can be repeated but
Vertices and Edges d Edges can not be repeated
\
can be repeated S
/ \
-~ TSN
” SN
Vertices can not be repeated Vertices can be repeated,

Edges can not be repeated Edges can not be repeated
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0 Walks, Trails and Paths

Walk \\ )
\ Vertices can be repeated but
Vertices and Edges d Edges can not be repeated
\
can be repeated S
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&’—_ ----“~~
” S
' ,
Vertices can not be repeated S« _ Vertices can be repeated,
Edges can not be repeated TN Edges can not be repeated

\

Vertices can not be repeated
Edges can not be repeated
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* APPLICATION: Prove that if two vertices U, W are connected with a Walk,: .
then they are connected with a path.
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o Walks, Trails and Paths ek i

* APPLICATION: Prove that if two vertices U, W are connected with a Walk,:’

then they are connected with a path.

o Let v,..,u,..,U,..,w, and let a vertex u that appears two or

more times.
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0 Walks, Trails and Paths ok ;
* APPLICATION: Prove that if two vertices U, W are connected with a Walk,: .

then they are connected with a path.

o Let v,..,u,..,U,..,w, and let a vertex u that appears two or

more times.

o Removing from the walk the vertices that appear between the first and
the last appearance of vertex U (including the last appearance of u) it

results to a walk where u appears only once.
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o Walks, Trails and Paths Gk
* APPLICATION: Prove that if two vertices U, W are connected with a Walk,:

then they are connected with a path.

o Let v,..,u,..,U,..,w, and let a vertex u that appears two or

more times.

o Removing from the walk the vertices that appear between the first and
the last appearance of vertex U (including the last appearance of u) it

results to a walk where u appears only once.

o Iterate over all vertices with multiple instances on the walk.
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o0 Walks, Trails and Paths R,
* The length of a walk/trail/path equals the cardinality of the included edges. :
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O Walks, Trails and Paths gk
* The length of a walk/trail/path equals the cardinality of the included edges. -

Ay = (3,4, Vs, V7, Uy, Uy, Us, Uy, V1)
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O Walks, Trails and Paths gk
* The length of a walk/trail/path equals the cardinality of the included edges. -

Ay = (v3» Uy, Us, V7, V3, Uy, Vs, Uy, U1)
AZ - (v3' Vg, U5, v6r V7, U5, V4, V2, vl)
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O Walks, Trails and Paths gk
* The length of a walk/trail/path equals the cardinality of the included edges. -

Al — (UBJ U4_, U5, U7, v21 U4, 175, 172, 171)
AZ — (U3, U4_, USI v6; 177, 175, 174_, v21 vl)
A3 — (v31 U4, U5, 776; U7, vSl v21 vl)
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O Walks, Trails and Paths gk
* The length of a walk/trail/path equals the cardinality of the included edges. -

Ay = (V3,V4, Vs, V7, V2, Vs, Vs, V2, V1)
AZ = (v3r V4, Vs, Ve, U7, Us, Uy, U2, vl)
A3 = (U3; V4, Vs, Vg, V7, Vs, U2, vl)
Ay = V3,04, Vs, Vg, V7, V2, V1)
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* The length of a walk/trail/path equals the cardinality of the included ed

gCS.

* Edge Disjoint Paths:
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O Distances 7

* The length of a walk/trail/path equals the cardinality of the included edges. T

* Distance between two vertices:

The length of a shortest path from u to v.
o Non-negative: dist(v,u) > O0forv #u (dist(v,u) = 0, if v = u)

o Symmetrical: dist(v,u) = dist(u,v)

U
o Triangle Inequality: dist(v,u) + dist(u,w) = dist(v,w) C& a
V 3 w
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o0 Distances

Compute Distances
between vertices of
simple graphs
(Moore, 1959)
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o0 Distances

dist(v,, v,) = 25

Compute Distances
between vertices of
weighted graphs
(Dijkstra, 1959)
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o0 Distances

* Eccentricity is the maximum distance from vertex ¥ to any other vertex

u of the graph. — e(v) = max{d(v,u)|u € V(G)}

* Radius of a graph G, radius(G) is the minimum eccentricity exhibited

across the vertices of G. — radius(G) = min{e(v)|v € V(G)}

* Diameter of a graph G, is the maximum eccentricity exhibited

across the vertices of G G. — diameter(G) = max{e(v)|v € V(G)}
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o0 Distances

* Eccentricity is the maximum distance from vertex ¥ to any other vertex

u of the graph. — e(v) = max{d(v,u)|u € V(G)}

* Radius of a graph G, radius(G) is the minimum eccentricity exhibited

across the vertices of G. — radius(G) = min{e(v)|v € V(G)}

* Diameter of a graph G, is the maximum eccentricity exhibited

across the vertices of G G. — diameter(G) = max{e(v)|v € V(G)}

radius(G) < diameter(G) < 2 - radius(G)
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o0 Distances

* Eccentricity is the maximum distance from vertex ¥ to any other vertex

u of the graph. — e(v) = max{d(v,u)|u € V(G)}

* Radius of a graph G, radius(G) is the minimum eccentricity exhibited

across the vertices of G. — radius(G) = min{e(v)|v € V(G)}

* Diameter of a graph G, is the maximum eccentricity exhibited

across the vertices of G G. — diameter(G) = max{e(v)|v € V(G)}

radius(G) < diameter(G) < 2 - radius(G)

2
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o0 Distances

u of the graph. — e(v) = max{d(v,u)|u € V(G)}

* Radius of a graph G, radius(G) is the minimum eccentricity exhibited

across the vertices of G. — radius(G) = min{e(v)|v € V(G)}

* Diameter of a graph G, is the maximum eccentricity exhibited

across the vertices of G G. — diameter(G) = max{e(v)|v € V(G)}

radius(G) < diameter(G) < 2 - radius(G)

2

raditus( ()
v

diameter((r)

Eccentricity is the maximum distance from vertex v to any other vertex
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o0 Distances

* Eccentricity is the maximum distance from vertex ¥ to any other vertex

u of the graph. — e(v) = max{d(v,u)|u € V(G)}

* Radius of a graph G, radius(G) is the minimum eccentricity exhibited

across the vertices of G. — radius(G) = min{e(v)|v € V(G)}

* Diameter of a graph G, is the maximum eccentricity exhibited

across the vertices of G G. — diameter(G) = max{e(v)|v € V(G)}

radius(G) < diameter(G) < 2 - radius(G)

2

radius(G) = 2

diameter(G) =
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o0 Distances

* Eccentricity is the maximum distance from vertex ¥ to any other vertex

u of the graph. — e(v) = max{d(v,u)|u € V(G)}

* Radius of a graph G, radius(G) is the minimum eccentricity exhibited

across the vertices of G. — radius(G) = minf{e(v)|v € V(G)}

* Diameter of a graph G, is the maximum eccentricity exhibited

across the vertices of G G. — diameter(G) = max{e(v)|v € V(G)}

radius(G) < diameter(G) < 2 - radius(G)

2

radius(G) = 2

diameter(G) =
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o0 Distances

* APPLICATION:
Prove that in each graph it holds that: radius(G)<diameter(G)<2-radius(G)
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o0 Distances

* APPLICATION:
Prove that in each graph it holds that: radius(G)<diameter(G)<2-radius(G)

o By definition it holds that the left part is truth.
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o0 Distances
* APPLICATION:

Prove that in each graph it holds that: radius(G)<diameter(G)<2-radius(G)
o By definition it holds that the left part is truth.
o For the right part, we assume that

> there exist two vertices X, y: dist(x,y) = diameter(G)

> Let z a vertex: the largest shortest path from z has length equal the

radius of G — e(z) = radius(G)
x o—{ :: y——a ¥
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o0 Distances
* APPLICATION:

Prove that in each graph it holds that: radius(G)<diameter(G)<2-radius(G)

O By definition it holds that the left part is truth.
o For the right part, we assume that
> there exist two vertices X, y: dist(x,y) = diameter(G)

> Let z a vertex: the largest shortest path from z has length equal the

radius of G — e(z) = radius(G)
x o—{ :: —e ¥

» From the Triangle Inequality it holds that:
diameter(G) = dist(x,y) < dist(x,z) + dist(z,y) < e(z) + e(z) = 2 - radius(G)
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O Graph Center and Graph Median

® The subgraph of a graph G induced by the vertices of G with the minimum
eccentricity is called Center of graph G (denoted as center(()).
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O Graph Center and Graph Median ek ik
® The subgraph of a graph G induced by the vertices of G with the minimum -
eccentricity is called Center of graph G (denoted as center(()).
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O Graph Center and Graph Median R r
® The subgraph of a graph G induced by the vertices of G with the minimum -

eccentricity is called Center of graph G (denoted as center(()).
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O Graph Center and Graph Median
® Theorem: Each graph G is the center of a connected graph H.
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O Graph Center and Graph Median

® Theorem: Each graph G is the center of a connected graph H.




PATHS AND CYCLES ...

0
Lol

O Graph Center and Graph Median

® Theorem: Each graph G is the center of a connected graph H.

1. Construct the hyper-graph H ...
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O Graph Center and Graph Median
® Theorem: Each graph G is the center of a connected graph H.

1. Construct the hyper-graph H ...

2. Vertices V1, U, are connected to all the vertices of H
while U4, U, are connected to vy, V5.
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O Graph Center and Graph Median
® Theorem: Each graph G is the center of a connected graph H.

e(w) = 2

e(v)) =e(v,)=3

_ a f— 4
1. Construct the hyper-graph H ... e(u,) = e(uy)

2. Vertices V1, U, are connected to all the vertices of H
while U4, U, are connected to vy, V5.

3. In hyper-graph H it holds that e(v) = 2V v € E(G),
while it holds that e(vy) = e(v,) = 3 and e(uq) = e(uy) = 4,

hence the graph G consists the center of graph H.
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O Graph Center and Graph Median

* Vertex Distance is defined as the sum of the distances between a specific

I ﬁ'..7 AN T' ‘
vertex and all the vertices of the graph.

dist(v) = z dist(v,u)
uev(ag)
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O Graph Center and Graph Median

* Vertex Distance is defined as the sum of the distances between a specific

vertex and all the vertices of the graph.

dist(v) =

V4

dist(v,u)
uev(ag)
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O Graph Center and Graph Median

* Vertex Distance is defined as the sum of the distances between a specific

vertex and all the vertices of the graph.

dist(v) = z dist(v,u)
uev(ag)

dist(v,) =

U3

V4
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* Vertex Distance is defined as the sum of the distances between a specific o

vertex and all the vertices of the graph.

dist(v) = z dist(v,u)
uev(ag)

dist(v,) =

U3

V4
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O Graph Center and Graph Median Pk s
* Vertex Distance is defined as the sum of the distances between a specific -

vertex and all the vertices of the graph.

dist(v) = Z dist(v,u)
uev(qg)

dist(v,) =

U3

V4
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O Graph Center and Graph Median Pk iy
* Vertex Distance is defined as the sum of the distances between a specific o

vertex and all the vertices of the graph.

dist(v) = z dist(v,u)
uev(ag)

dist(v,) = 26

U3

V4
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* Vertex Distance is defined as the sum of the distances between a specific

vertex and all the vertices of the graph.

dist(v) = z dist(v,u)
uev(ag)

38
4
U3
6
Vg
5

59
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O Diameter of a Graph

Algorithm Center Computation

Input: Matrix D (Floyd) with the Distances of the vertices of a graph G
Output: The Center of the graph G.

1. Fori=1:1:n

2 dist(i)< O

3. For j=1:1:n

4 if (i #j AND D(,j) >dist(i))
5. dist(i) < D(,j)
6. Center « 1

7. Fori=1:1:n

8 if(dist(i)<dist(Center))
9 Center « 1
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® The subgraph of a graph G induced by the vertices of G with the minimum o
distance is called Median of graph G (denoted as median(G)).

=3
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O Graph Center and Graph Median

Algorithm Median Computation

Input: Matrix D (Floyd) with the Distances of the vertices of a graph G
Output: The Median of the graph G.

1. For i=1:1:n

2 sum(i)«< 0

3. For j=1:1:n

4 if (i #7j)

5. sum(i) < sum(i) + D(i,j)
6. Median « 1

7. For i=1:1:n

8 if(sum(i)<sum(Median))
9 Median < i
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O Graph Center and Graph Median

® The Median and the Center of a graph G are not always the same.
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O Graph Center and Graph Median

® The Median and the Center of a graph G are not always the same.

e(v;) =4
e(v,) =3
e(vy) =2
e(v,) =3
e(vs) =4
e(vg) =4
e(v;)=4
e(vg) =4
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O Graph Center and Graph Median

® The Median and the Center of a graph G are not always the same.

dist(v) = 0+1+2+3+4+4+4+4 = 22

dist(v,) = 3+2-+-1+0+1+1+1+1 = 10
dist(vs) = 4+3+2+1+0+242+2 = 16

e(v;) =4
e(v,) =3
e(vy) =2
e(v,) =3
e(vs) =4
e(vg) =4
e(v;)=4
e(vg) =4
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O Graph Center and Graph Median

® The Median and the Center of a graph G are not always the same.

@

dist(v) = 0+1+2+3+4+4+4+4 = 22

dist(v,) = 3+2-+-1+0+1+1+1+1 = 10
dist(vs) = 4+3+2+1+0+242+2 = 16

e(v;) =4
e(v,) =3
e(vy) =2
e(v,) =3
e(vs) =4
e(vg) =4
e(v;)=4
e(vg) =4
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O Diameter of a Graph

® The Diameter of a graph is defined to be the longest shortest path

exhibited across all possible pairs of vertices.

Algorithm Diameter Computation

Input: A graph G = (V, E) with vertices 1,2, ...,n
Output: The value of the Diameter of the Graph.

Set MaxLength < 0
For i=1:1:n
dist(i) « o0 and flag(i) < false
For i=1:1:n
temp < 0, dist(i) < oo and flag(i) < true
Enqueue(Q,i)
while Q # isnull();
u < Dequeue(Q)
V (u,v) € E(G)
if flag(v)=false
flag(v) < true and dist(v) < dist(u)+1
if dist(v) > temp
temp < dist(v)
Enqueue(Q,v)
if MaxLenth < temp
MaxLength < temp

A A R

T T T T = Y
AN oI
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o Centrality i
* In applications of Graph Theory, the term Centrality identify the most

important vertices within a graph.

* Centrality indices are answers to the question "What characterizes an
important vertex?”, while the word "importance" has a wide number of

meanings, leading to many different definitions of centrality.

* Regarding the criteria deployed to measure centrality, it can be categorized to

the following types:
1. Degree Centrality
2. Closeness Centrality

3. Betweeness Centrality
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O Centrality

® The term of Degree Centrality is defined as the number of links incident

upon a node (i.e., the number of ties that a node has).

® The degree can be interpreted in terms of the immediate risk of a node for
catching whatever is flowing through the network (such as a virus, or some

information).
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o Centrality R
® The term of Degree Centrality is defined as the number of links incident

upon a node (i.e., the number of ties that a node has).

® The degree can be interpreted in terms of the immediate risk of a node for

catching whatever is flowing through the network (such as a virus, or some

information).

* The Degree Centrality of a vertex v, for a given graph G = (V, E) with

|V| vertices and |E| edges, is defined as:

(p(v) = deg(v)
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O Centrality

® In a connected graph, the normalized Closeness Centrality of a
node is the average length of the shortest path between the node and all
other nodes in the graph.

* 'The more central a node is, the closer it is to all other nodes.
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O Centrality

* In a connected graph, the normalized Closeness Centrality of a

node is the average length of the shortest path between the node and all
other nodes in the graph.

The more central a node is, the closer it is to all other nodes.

* Closeness Centrality is computed as:

Cx) = 2y d(y, x)

where d(y,x) is the distance between vertices x and y.

In order to adjust the formula to compare graphs of different sizes, the

normalized form 1s computed, given by the previous formula multiplied by

N-1, where N is the number of nodes 1in the graph. @
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O Centrality

® In a connected graph, the normalized Closeness Centrality of a
node is the average length of the shortest path between the node and all
other nodes in the graph.

* 'The more central a node is, the closer it is to all other nodes.

* Closeness Centrality is computed as:

C(x) =

2y d(y,x)

where d(y,x) is the distance between vertices x and y.

® Taking distances from or to all other nodes is irrelevant in undirected

graphs, whereas it can produce totally different results in directed graphs.
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O Centrality

* The term Betweenness Centrality quantifies the number of times a node

acts as a bridge along the shortest path between two other nodes.




PATHS AND CYCLES ...

O Centrality

* The term Betweenness Centrality quantifies the number of times a node

acts as a bridge along the shortest path between two other nodes.

® Under this concept, vertices that have a high probability to occur on a
randomly chosen shortest path between two randomly chosen vertices have

a high betweenness.
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O Centrality

° The term Betweenness Centrality quantifies the number of times a node

acts as a bridge along the shortest path between two other nodes.

® Under this concept, vertices that have a high probability to occur on a
randomly chosen shortest path between two randomly chosen vertices have

a high betweenness.

* The Betweenness Centrality of a vertex v in a graph G=(V,E) with V

vertices 1s computed as follows:
1. For each pair of vertices (s,t), compute the shortest paths between them.

2. For each pair of vertices (s,t), determine the fraction of shortest paths

that pass through the vertex in question (here, vertex v).

3. Sum this fraction over all pairs of vertices (s,t).
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O Centrality

° The term Betweenness Centrality quantifies the number of times a node

acts as a bridge along the shortest path between two other nodes.

® More compactly the betweenness can be represented as

B 05t (V)
Cp(v) = -
Ost
SFUVFLEV
® where 0y 1s total number of shortest paths from node s to node t and

05t (V) is the number of those paths that pass through v.

® The betweenness may be normalised by dividing through the number of
pairs of vertices not including v, which:

o for directed graphsis (n —1)(n — 2)}(n — 1)(n — 2) and

o for undirected graphsis (n — 1)(n — 2)/2}(n — 1)(n — 2) /2. °
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O Centrality

° The term Betweenness Centrality quantifies the number of times a node

acts as a bridge along the shortest path between two other nodes.

® More compactly the betweenness can be represented as

Co(v) = o5t (V)

0]
SFV+tEV st

® where 0y 1s total number of shortest paths from node s to node t and

05t (V) is the number of those paths that pass through v.

®* FPor example, in an undirected star graph, the center vertex (which 1s
contained in every possible shortest path) would have a betweenness of
mM—1(n—-2)/2}(n—1)(n—2)/2 (1, if normalised) while the leaves
(which are contained in no shortest paths) would have a betweenness of 0. @
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o Eulerian Graphs T

®* The Seven Bridges of Konigsberg is a historically notable problem in
mathematics. Its negative resolution by Leonhard Euler in 1736 laid the

foundations of graph theory and prefigured the idea of topology.
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O Eulerian Graphs

® The city of Konigsberg in Prussia (now Kaliningrad, Russia) was set on
both sides of the Pregel River, and included two large islands - Kneiphof
and Lomse - which were connected to each other, or to the two mainland

portions of the city, by seven bridges.

* The problem was to devise a walk through the city that would cross

each of those bridges once and only once.

R s

RR (7]
ot
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O Eulerian Graphs

s
Cas

* By way of specitying the logical task unambiguously, explicitly unacceptables

solutions involved either:
a) reaching an island/mainland bank other than via one of the bridges, or

b) accessing any bridge without crossing to its other end are.
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O Eulerian Graphs

® FEuler proved that the problem has no solution. The difficulty he faced Was; o
the development of a suitable technique of analysis, and of subsequent tests

that established this assertion with mathematical rigor.

[ D D
- ©
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o Eulerian Graphs R

* First, Euler pointed out that the choice of route inside each land mass is

irrelevant.

® The only important feature of a route is the sequence of bridges crossed.

® This allowed him to reformulate the problem in abstract terms (laying the

foundations of graph theory), eliminating all features except the list of land

masses and the bridges connecting them.
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o Eulerian Graphs ko

* First, Euler pointed out that the choice of route inside each land mass is

irrelevant.

® The only important feature of a route is the sequence of bridges crossed.

® This allowed him to reformulate the problem in abstract terms (laying the

foundations of graph theory), eliminating all features except the list of land

masses and the bridges connecting them.

He replaced ...

each land mass with an abstract "vertex!" or  node, and
each bridge with an abstract connection, an "edge', which

only serves to record which pair of wvertices is connected by that bridge.
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o Eulerian Graphs R

* First, Euler pointed out that the choice of route inside each land mass is

irrelevant.

® The only important feature of a route is the sequence of bridges crossed.

® This allowed him to reformulate the problem in abstract terms (laying the

foundations of graph theory), eliminating all features except the list of land

masses and the bridges connecting them.
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O Eulerian Graphs

® Next, Euler observed that (except at the endpoints of the walk), whenever

one enters a vertex by a bridge, one leaves the vertex by a bridge.

o During any walk in the graph, the number of times one enters a non-

terminal vertex equals the number of times one leaves it.

o If every bridge has been traversed exactly once, it follows that, for each
land mass (except start/finish), the number of bridges touching that land

mass must be even (half "toward" and half "away" from the landmass).

o All four of the land masses in the original problem are touched by an odd
number of bridges (one is touched by 5 bridges, and each of the other
three is touched by 3).

o Since, at most, two land masses can serve as the endpoints of a walk, the

proposition of a walk traversing each bridge once leads to a contradiction. e
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O Eulerian Graphs

® Is it possible in a graph to find a closed trace (circuit) crossing all the edgés: |
of the graph, exactly one time?

* Theorem - Eulerian Graph: Include closed trace (circuit)

o A graph G is Eulerian iff it includes exactly 0 vertices of odd degree.

* Theorem - Semi-Eulerian Graphs: Include open trace (path)

o A graph G is Semi-Eulerian iff it include exactly 2 vertices of odd degree.

O How can it be effectively checked if a graph is Eulerian?
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O Eulerian Graphs

* Is it possible in a graph to find a closed trace (circuit) crossing all the edges

of the graph, exactly one time?
* Theorem - Eulerian Graph: Include closed trace (circuit)

o A graph G is Eulerian iff it includes exactly 0 vertices of odd degree.

* Theorem - Semi-Eulerian Graphs: Include open trace (path)

o A graph G is Semi-Eulerian iff it include exactly 2 vertices of odd degree.

O How can it be effectively checked if a graph is Eulerian?
» Deploying DFS and the Theorem

> In linear time O(n + m)
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O Eulerian Graphs

® Is it possible in a graph to find a closed trace (circuit) crossing all the edgés: |
of the graph, exactly one time?

* Theorem - Eulerian Graph: Include closed trace (circuit)

o A graph G is Eulerian iff it includes exactly 0 vertices of odd degree.

* Theorem - Semi-Eulerian Graphs: Include open trace (path)

o A graph G is Semi-Eulerian iff it include exactly 2 vertices of odd degree.

O Theorem: A simple connected graph G=(V,E) is Eulerian iff each of its

edges belongs to an odd number of cycles.
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O Eulerian Graphs

* Theorem: A simple connected graph G is Eulerian (resp., Semi—Eulerian)z |

fff it includes exactly O (resp., exactly 2) vertices of odd degree.

Proof.

Necessity of Condition:

If there exists Eulerian Circuit (resp., open trace), then G should be

connected and the number of odd-degree vertices should be 0 (resp., 2).

Sufficiency of Condition: (Inductively on the number of edges)

a) If |E| =2, the truth is obvious. Let the proposition is truth for
|E| > 2. Let us assume that graph Gcontains two vertices of odd
degree (let, vq, Vy). Let as assume a walk from vertex v; (vq if
there exist odd-degree vertices). Let the walk W cross various vertices
until it reaches vertex v}, without omitting the corresponding edges.

If the graph G does not contain odd-degree edges, then v;j=v;, @

else v; = v;.
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O Eulerian Graphs
* Theorem: A simple connected graph G is Eulerian (resp., Semi—Eulerian)z |

fff it includes exactly O (resp., exactly 2) vertices of odd degree.

Proof.

Necessity of Condition:

If there exists Eulerian Circuit (resp., open trace), then G should be

connected and the number of odd-degree vertices should be 0 (resp., 2).

Sufficiency of Condition: (Inductively on the number of edges)

b) However, it is not obvious if the walk W has crossed through all the

vertices. If so, there exist edges that have not been utilized.

1. If we remove the rest of the utilized edge, then a subgraph G’

results, that 1s not necessarily connected.

2. The graph G’ should contain only even-degree vertices. °
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O Eulerian Graphs
* Theorem: A simple connected graph G is Eulerian (resp., Semi—Eulerian)z |

fff it includes exactly O (resp., exactly 2) vertices of odd degree.

Proof.

Necessity of Condition:

If there exists Eulerian Circuit (resp., open trace), then G should be

connected and the number of odd-degree vertices should be 0 (resp., 2).

Sufficiency of Condition: (Inductively on the number of edges)

b) However, it is not obvious if the walk W has crossed through all the

vertices. If so, there exist edges that have not been utilized.

3. According to the assumption of the induction, each component of
G’ contains an Eulerian circuit. Since graph G is connected, then
the walk should pass from at least one vertex of each component

of G'.
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O Eulerian Graphs
* Theorem: A simple connected graph G is Eulerian (resp., Semi—Eulerian)z |
fff it includes exactly O (resp., exactly 2) vertices of odd degree.
Proof.

Necessity of Condition:

If there exists Eulerian Circuit (resp., open trace), then G should be

connected and the number of odd-degree vertices should be 0 (resp., 2).

Sufficiency of Condition: (Inductively on the number of edges)

b) However, it is not obvious if the walk W has crossed through all the

vertices. If so, there exist edges that have not been utilized.

4. It can be constructed an Eulerian circuit (or open trace) for the

graph G by introducing the Eulerian circuits of the components of

the subgraph G’ to the walk W, @
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O Eulerian Graphs

* Theorem : A simple connected graph G is Eulerian (resp., Semi-Eulerian)

#ff it includes exactly O (resp., exactly 2) vertices of odd degree.

Proof.of the Sufficiency of Condition: (Inductively on the number of edges)
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O Discovering Eulerian Circuits in Graphs

® Let us assume that we follow a naitve approach of discovering an Eulerian

circuit in a given graph,
O starting from an arbitrary vertex and
o proceeding over the edges that have not been examined yet.
® ... such an approach does not guarantee that it can discover the circuit!

® A graph is called arbitrarily traceable from vertex v, if it is guaranteed
that we can draw a closed trace based on the previous naive approach

starting from vertex v.
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O Discovering Eulerian Circuits in Graphs

* Algorithms to discover Eulerian circuits in graphs.

o Hierholtzer (1873): Concatenation of circuits

o Fleury (1883): Gradual extension of tract T;, avoiding bridges in the
subgraph G — E (T;) unless there is no other option.

o Tucker (1976): Vertex split as to form individual cycles and

concatenation of cycles.
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O Discovering Eulerian Circuits in Graphs

Hierholtzer

Input: A connected graph G = (V, E') with vertices of even degree
Output: An Eulerian circuit of graph G.

Select a vertex ¥ € V creating circuit Cg selecting edges & C
Seti <0
C = C;is an Eulerian Circuit
4. Else
Select a vertex v; of C; adjacent to an edge in C; and
proceed by constructing another circuit C’; starting wit vertex v;
inside the subgraph G — E(C;)
6. From the circuits C; and C’; , construct a hyper-circuit C; ¢ starting from vertex
V;_1 crossing circuit C; and continuing to circuit C’; frinishing to vertex v;
7. leit+1
8.  Goto step 3.
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O Discovering Eulerian Circuits in Graphs

* Hierholtzer
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* Hierholtzer

Cq

°* (:1-2-6-1
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O Discovering Eulerian Circuits in Graphs

* Hierholtzer

C
C, ’

°* (:1-2-6-1
°* (,:2-53-56->5-2

° (3:3->5->4-73
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O Discovering Eulerian Circuits in Graphs

* Hierholtzer

C
C, ’

* (;:1-2-6-1
°* (,:2-53-56->5-2

¢ C3:
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O Discovering Eulerian Circuits in Graphs

* Hierholtzer

C
C, ’

Select a vertex in vV € C;

that is adjacent to edge & C;
* (;:1-2-6-1

°* (,:2-53-56->5-2

¢ C3:
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O Discovering Eulerian Circuits in Graphs

* Hierholtzer

C
C, ’

Select a vertex in vV € C;
that is adjacent to edge & C;

Merge consecutively €’ = C; + C,=

=1>52-53->6->5-2-506-1
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O Discovering Eulerian Circuits in Graphs

* Hierholtzer

C
C, ’

Select a vertex in vV € C;
that is adjacent to edge & C;

* C111-2-6-1
C Merge consecutively €’ = C; + C,=
o CZ:‘2—>3—>6—>5—>2) 152535655 52501

¢ C3:
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O Discovering Eulerian Circuits in Graphs

* Hierholtzer

C
C, 2

Select a vertex in vV € C;
that is adjacent to edge & C;

Merge consecutively C’ += (3=

=1-2-3-5504-53 56—-5-2-06—-1
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O Discovering Eulerian Circuits in Graphs

* Hierholtzer

Cy ¢
O
Select a vertex in vV € C;
that is adjacent to edge & C;
* (i:1-2-6-1 . , B
Merge consecutively €’ += (3=
° (G 2—>3—>6—>5—>2 =1-22-3-5-24-53 56—5-2-0—1

.CS
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O Discovering Eulerian Circuits in Graphs

Fleury
Input: A connected graph G = (V, E') with vertices of even degree
Output: An Eulerian circuit of graph G.

Select a vertex Vg € V as first vertex of the trace

Set Tp « (V) and i < 0

Let the trace T; = (vy, e1,v4, ..., €;, V;)

From vertex v; Select arbitrarily an edge e;,q & T; thatis not a bridge in the
subgraph G — E(T_i), unless there is no other option.

Define path T; 1 = (Ty, €541, Vit1)

6. 1L<i+1

A

ot

If (i = |E])
C =T, is an Eulerian circuit
8. Else

Goto step 3.
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O Discovering Eulerian Circuits in Graphs

Tucker

Input: A connected graph G = (V, E') with vertices of even degree

Output: An Eulerian circuit of graph G.

otk W=

10.
11.

12.
13.

Split the vertices until there exist only vertices of degree “2”
Let G4 the produced graph
i1
Let ¢4 the even number of components of graph G4
If C; = 1
C = G; is Eulerian circuit
Else
Search two components T and T’ of G_i having v; as common vertex
Construct circuit C; 4 starting from vertex V;, crossing T and T’ finishing to v;
Define graph G;.q = G; —{T, T’} U Ci;4
C_(i + 1) is a component of the subgraph G;,
T =Ciyq
i<i+1
Let c; is the number of components of subgraph G;
Goto step 5
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O Discovering Eulerian Circuits in Graphs

* Tucker

Concept: Split the vertices until there
exist only vertices of degree “2”
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O Discovering Eulerian Circuits in Graphs

* Tucker

Concept: Split the vertices until there
exist only vertices of degree “2”
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O Discovering Eulerian Circuits in Graphs

* Tucker
Concept: Split the vertices until there
exist only vertices of degree “2”
@
O 1\‘“@
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* Tucker

Concept: Split the vertices until there
exist only vertices of degree “2”
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O Discovering Eulerian Circuits in Graphs

* Tucker

Concept: Split the vertices until there
exist only vertices of degree “2”

0\\ 5>4->6-5

1-2-55-1 o“x [ 2a)
P /
_ \ - 1\9’/ ?/@¥
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Concept: Split the vertices until there
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O Discovering Eulerian Circuits in Graphs

* Tucker

Concept: Split the vertices until there
exist only vertices of degree “2”

0\\ 5>4->6-5

1-2-55-1 o“x [ 2a)
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O Discovering Eulerian Circuits in Graphs

* Tucker
Concept: Split the vertices until there
exist only vertices of degree “2”

o aﬁ\@ 5-4-56-5

1%2%5;}/‘ma ff/
T
P N Vot
s \ 16 P
< (3] - J,/
A e
~ o e
\@
25359452 ¥ ? ¥ \@ 7
~ -

1-02-3-4-52->5-54-56-5
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O Chinese Postman Problem...
® The “CPP” Problem:

A postman starting from his office has to cross all the streets and

return to his office as soon as possible!
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O Chinese Postman Problem...
® The “CPP” Problem:

A postman starting from his office has to cross all the streets and

return to his office as soon as possible!

Mei-Ko Kwan,
1962
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O Chinese Postman Problem...
® The “CPP” Problem:

A postman starting from his office has to cross all the streets and

return to his office as soon as possible!

® find a shortest closed path or circuit that visits every edge

of an (connected) undirected graph.

When the graph has an Eulerian circuit that is an optimal solution.

Otherwise, the optimization problem is to find the smallest number of
graph edges to duplicate (or the subset of edges with the minimum

possible total weight) so that the resulting multigraph does have an
FEulerian circuit.

It may be solved in polynomial time.
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* If the graph G is not Eulerian, then some edges have to be crossed more

than one times ... how many?
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® The “CPP” Problem:

A postman starting from his office has to cross all the streets and

return to his office as soon as possible!

* If the graph G is not Eulerian, then some edges have to be crossed more

than one times ... how many?

o If graph G is a tree — ... times
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O Chinese Postman Problem...
® The “CPP” Problem:

A postman starting from his office has to cross all the streets and

return to his office as soon as possible!

* If the graph G is not Eulerian, then some edges have to be crossed more

than one times ... how many?
o If graph G is a tree — two times

The length [ of the optimal solution is |[E| < | < 2|E]|
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O Chinese Postman Problem...
® The “CPP” Problem:

A postman starting from his office has to cross all the streets and

return to his office as soon as possible!

If the graph G is not Eulerian, then some edges have to be crossed more

than one times ... how many?
o If graph G is a tree — two times
The length [ of the optimal solution is |[E| < | < 2|E]|

o Otherwise 2?7
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® The “CPP” Problem:

A postman starting from his office has to cross all the streets and

return to his office as soon as possible!

If the graph G is not Eulerian, then some edges have to be crossed more

than one times ... how many?

o Solution in case the graph G is not a tree ...
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O Chinese Postman Problem...
® The “CPP” Problem:

A postman starting from his office has to cross all the streets and

return to his office as soon as possible!

If the graph G is not Eulerian, then some edges have to be crossed more

than one times ... how many?
o Solution in case the graph G is not a tree ...

We select the vertices of odd-degree and connect them with

“virtual edges” (if necessary), of weight equal to the weight (length) of
the shortest path between them.
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® The “CPP” Problem:

A postman starting from his office has to cross all the streets and

return to his office as soon as possible!

If the graph G is not Eulerian, then some edges have to be crossed more

than one times ... how many?
o Solution in case the graph G is not a tree ...

We apply an algorithm for the computation of Eulerian circuit, and

replace each “virtual-edge”, let xy, with a real shortest path from

vertex X to vertex Y.
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Given a 12-side geometrical shape (regular graph of degree 3, 20 vertices and 30 edges), each vertex
represents a city.
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Given a 12-side geometrical shape (regular graph of degree 3, 20 vertices and 30 edges), each vertex
represents a city. Let the players “A” and “B”.
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Given a 12-side geometrical shape (regular graph of degree 3, 20 vertices and 30 edges), each vertex
represents a city. Let the players “A” and “B”. Player “A” defines the 5 first cities and challenges
“B” to draw a path crossing only once each of the rest cities finishing, to the city given first by “A1”.
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* Problem:

Is it possible in each graph to find a closed path (cycle)

that crosses all vertices only once?

* A Hamiltonian path (or traceable path) is a path in an undirected or

directed graph that visits each vertex exactly once.

* A Hamiltonian cycle (or Hamiltonian circuit) is a Hamiltonian path that

is a cycle.
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0 Hamiltonian Graphs

Problem:

Is it possible in each graph to find a closed path (cycle)

that crosses all vertices only once?

A Hamiltonian path (or traceable path) is a path in an undirected or

directed graph that visits each vertex exactly once.

* A Hamiltonian cycle (or Hamiltonian circuit) is a Hamiltonian path that

is a cycle.

* A Hamiltonian graph, is a graph that contains Hamiltonian cycle.

< K <D g
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0 Hamiltonian Graphs

A graph G is called traceable if it has Hamiltonian path.
Every Hamiltonian graph is traceable, but the inverse does not hold.

A graph G is called homogeneously traceable if there exists a

Hamiltonian path starting from a random vertex.

A graph G is called hypo-Hamiltonian, if G is not Hamiltonian but the
graph G — v is Hamiltonian.

Every hypo-Hamiltonian graph is homogeneously traceable, but the

inverse does not hold.

A graph G is called Hamiltonian-connected if every two vertices are

connected by a Hamiltonian path.

Every Hamiltonian-connected graph where n = 3 is Hamiltonian, but

the inverse does not hold.
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0 Hamiltonian Graphs

* Problem:

The necessary and sufficient condition for a graph to be Hamiltonian?
... NP-Complete

* Theorem 1: Every complete graph is Hamiltonian
... the graph K, is HamiltonianVn = 1

* Theorem 2: Fach K, graph of odd cardinality of vertices has
(n — 1)/2 Hamiltonian cycles with different edges.
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0 Hamiltonian Graphs

* Problem:

The necessary and sufficient condition for a graph to be Hamiltonian?
... NP-Complete

* Theorem 1: Every complete graph is Hamiltonian
... the graph K, is HamiltonianVn = 1

* Theorem 2: Fach K, graph of odd cardinality of vertices has
(n — 1)/2 Hamiltonian cycles with different edges.

o A complete graph has n(n-1)/2 edges.
o A Hamiltonian graph cycle has length n.
o The graph may has at most (n-1)/2 cycles of different edges.

o It has to be proven that is has exactly as many cycles ...
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0 Hamiltonian Graphs

* Problem:

The necessary and sufficient condition for a graph to be Hamiltonian?
... NP-Complete

* Theorem 1: Every complete graph is Hamiltonian
... the graph K, is HamiltonianVn = 1

* Theorem 2: Fach K, graph of odd cardinality of vertices has
(n — 1)/2 Hamiltonian cycles with different edges.

Proof: V-
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0 Hamiltonian Graphs

* Problem:

The necessary and sufficient condition for a graph to be Hamiltonian?
... NP-Complete

* Theorem 1: Every complete graph is Hamiltonian
... the graph K, is HamiltonianVn = 1

* Theorem 2: Fach K, graph of odd cardinality of vertices has
(n — 1)/2 Hamiltonian cycles with different edges.
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0 Hamiltonian Graphs

* Problem:

The necessary and sufficient condition for a graph to be Hamiltonian?
... NP-Complete

* Theorem 1: Every complete graph is Hamiltonian
... the graph K, is HamiltonianVn = 1

* Theorem 2: Fach K, graph of odd cardinality of vertices has
(n — 1)/2 Hamiltonian cycles with different edges.

Proof:

{vg ...
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e
Looca

O Hamiltonian Graphs Gk s
°* Theorem 3 (Dirac, 1952): If G is a simple graph with n > 3 vertices o
and it holds that d(G) = n/2, then the graph is Hamiltonian.

Proof:

o Let us assume that there exist k new vertices connected to all the

vertices of G.

o Let that kis as small as possible as the produced graph G’ to be

Hamiltonian.

o We will assume that k = 0 and we will result to contradiction.
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o .
Looca

O Hamiltonian Graphs I o
* Theorem 3 (Dirac, 1952): If G is a simple graph with n > 3 vertices o

and it holds that d(G) = n/2, then the graph is Hamiltonian.
Proof:

o Let us assume C = (v,p,w, -+, V) a Hamiltonian cycle of graph G’,

where v, W are vertices of G, while vertex p is one of the k vertices.

o Vertices v, W are not adjacent, otherwise vertex p could be bypassed

negating the assumption that k is as small as possible.

o A vertex W' adjacent to W, can not appear after a vertex V' that is
adjacent to v, because the sequence Vo>p > w = - 2>V > W —
-+ = v could be substituted with the sequence v > V' = - > w —

w' = -+ = v inverting the part between w and v/,
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e
Looca

O Hamiltonian Graphs ok s
°* Theorem 3 (Dirac, 1952): If G is a simple graph with n > 3 vertices o
and it holds that d(G) = n/2, then the graph is Hamiltonian.

Proof:

o Hence, the vertices of G’ that are non adjacent to W are at least as

many as the vertices adjacent to v (i.e., at least n/2 + k).
o The of vertices of G’ that are adjacent to w are at least n/2 + k

o Since there does not exist a vertex in G’ that is both adjacent and non-
adjacent to w, it follows that the total number n + k of the vertices

of G’ is no less than n + 2k ...which is a contradiction.




PATHS AND CYCLES ...

0 Hamiltonian Graphs

® Corollary: If the simple graph G with n = 3 vertices and it holds S
that d(G) = (n — 1)/2, then the graph has a Hamiltonian path .

Proof:
o Let the hyper graph H = G + K4, and let v a vertex of H & V(G).

o Since the hyper graph H is of order n+1, it holds that
dH)=d(G)= (n—1)/2 +1=n+1)/2.

o From Dirac’s Theorem, the graph H has a Hamiltonian cycle.

o Then, omitting vertex v it results to a Hamiltonian path.
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o .
Lol

O Hamiltonian Graphs ke
* Theotem 4 (Ore 1960): If the simple graph G with n > 3 vertices and

for all its non-adjacent vertices X and Yy it holds that
d(x) + d(y) = n, then the graph G is Hamiltonian.

Proof:
o Letus assume that the proposition of the Theorem is false.

o Then, there exist a non-Hamiltonian graph G with n vertices and the
maximum number of edges, in order for our assumption to be

satisfied.

« If we add one extra edge (x,y) on this graph between the vertices
x and vy, then the graph H = G + (x, y) will be Hamiltonian.

- Sincen = 3 it follows that the graph G is not complete.
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o .
Lol

O Hamiltonian Graphs ad iiin
* Theotem 4 (Ore 1960): If the simple graph G with n > 3 vertices and

for all its non-adjacent vertices X and Yy it holds that
d(x) + d(y) = n, then the graph G is Hamiltonian.

Proof:
o Letus assume that the proposition of the Theorem is false.

o Let us assume that the graph H is Hamiltonian an each Hamiltonian

cycle crosses edge (X, y).

- In the graph G there exist a Hamiltonian path
P = (vq,vy, ..., V), whete vy = x and v, = Y.

« If in this graph G, vertex x is adjacent to vV;, then it is not possible
vertex U, to be adjacent to vertex V;_q, because then graph

G there would exist a Hamiltonian cycle

(X, Vi Vit1s -y Uy Vi—1, Vi—2) «ee vl)-
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O Hamiltonian Graphs ad iiin
* Theotem 4 (Ore 1960): If the simple graph G with n > 3 vertices and

for all its non-adjacent vertices X and Yy it holds that
d(x) + d(y) = n, then the graph G is Hamiltonian.

Proof:
o Letus assume that the proposition of the Theorem is false.

o Let us assume that the graph H is Hamiltonian an each Hamiltonian

cycle crosses edge (X, y).

«  Then, for each vertex of G that is adjacent to vertex X there exist a

vertex in the graph G — y that is not adjacent to vertex y.

« 'Then, it holds: d(y) < (n — 1) — d(x), that is a contradiction.
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O Hamiltonian Graphs F2E 1S
* Theorem 5 (Bondy & Chvatal, 1976): Let G be a simple oraph, where
for two distinct non adjacent vertices X and Yy it holds that
d(x) + d(y) = n. Then the graph G is Hamiltonian iff the graph
G + (x,y) is Hamiltonian.

Proof:
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O Hamiltonian Graphs F2E 1S
* Theorem 5 (Bondy & Chvatal, 1976): Let G be a simple oraph, where
for two distinct non adjacent vertices X and Yy it holds that
d(x) + d(y) = n. Then the graph G is Hamiltonian #ff the graph
G + (x,y) is Hamiltonian.

Proof:
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0 Hamiltonian Graphs Pk 1
* Theotem 5 (Bondy & Chvatal, 1976): Let G be a simple graph, where

for two distinct non adjacent vertices X and Yy it holds that
d(x) + d(y) = n. Then the graph G is Hamiltonian #ff the graph

G + (x,y) is Hamiltonian.

Proof:

o iff— if and only if
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0 Hamiltonian Graphs
* Theorem 5 (Bondy & Chvatal, 1976): Lct G be a simple graph, where
for two distinct non adjacent vertices X and Yy it holds that

d(x) + d(y) = n. Then the graph G is Hamiltonian #ff the graph
G + (x,y) is Hamiltonian.

Proof:
o Iff— if and only if

o Ore’s Theorem utilizes the strong assumption that this relation holds

for every pair of non adjacent vertices.
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0 Hamiltonian Graphs
* Theorem 5 (Bondy & Chvatal, 1976): Lct G be a simple graph, where
for two distinct non adjacent vertices X and Yy it holds that

d(x) + d(y) = n. Then the graph G is Hamiltonian #ff the graph
G + (x,y) is Hamiltonian.

Proof:
o Iff— if and only if

o Ore’s Theorem utilizes the strong assumption that this relation holds

for every pair of non adjacent vertices.

« 'The “if” is obvious
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0 Hamiltonian Graphs
* Theorem 5 (Bondy & Chvatal, 1976): Lct G be a simple graph, where
for two distinct non adjacent vertices X and Yy it holds that
d(x) + d(y) = n. Then the graph G is Hamiltonian #ff the graph
G + (x,y) is Hamiltonian.

Proof:
o Iff— if and only if

o Ore’s Theorem utilizes the strong assumption that this relation holds

for every pair of non adjacent vertices.
« The “if” is obvious

« The “only if” is proven following the same process as in Ore’s

Theorem.




PATHS AND CYCLES ...

O Discovering Hamiltonian Cycles

Let a graph G with n = 5 vertices ...
Define Matrices M; and M

After sequential n — 1 matrix multiplications and input concatenations

result 2 matrix M*

Check if the inputs of M™ are Hamiltonian paths /cycles.
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O Discovering Hamiltonian Cycles

* Letagraph G withn = 5 vertices ...

* Define Matrices M; and M as follows:
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O Discovering Hamiltonian Cycles

* Letagraph G withn = 5 vertices ...

* Define Matrices M; and M as follows:

0 [AB]| 0 0 0
0 BC 0
0 CD | CE
0

Wleo|lo|lec |

P lo|lolo |
clo|lelOle
' T I I )
clEH|lEH||
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O Discovering Hamiltonian Cycles

Let a graph G with n = 5 vertices ...
Define Matrices M and M as follows:

Utilizing these matrices we proceed to sequential
matrix multiplications in order to construct matrices:
Mj=M;_, *M, 1<j<n , where, for each
clement  (r,s) of M; it holds that:
Mjce= Xt=1 Mj_1(r,t) * M(t,s)
and the symbol “ * ™ indicates the concatenation of the
corresponding elements of the two matrices M;_; and
M, it both the elements are non-zero, while the symbol
of the element of M is not included in the symbol of

element in Mj_; (Hadamard Product).

ED

>lo|loleo|e

Hle|lo|leo|m

(=3 T I e =]

Dleo|lO]|leo|o

clEH|EH]|eo |
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o .
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O Discovering Hamiltonian Cycles
M, =M, + M
M, (1,3)=X2-1 M;(1,t) * M(t,3)

M;(1,:) —> 0 AB0OOO
M(:,3) —0 C 000

M_2 (1 ,3) — 0ABC 0 0 0 o|B|lof|lo]o
olo]lclolo
olo|lo]|D|E M
0 0 ABC 0 0 oo o
0 0 0 BCD | BCE A|BJOJD]O
CEA CEB 0 CED CDE o | AB | o 0 0
0 0 BC 0 0
DEA DEB 0 0 0 0 0 0 o | cE
0 EAB | EBC 0 0 S L I N
EA EB 0 ED 0
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O Discovering Hamiltonian Cycles

.
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O Discovering Hamiltonian Cycles

0 AB 0 0 0
0 0 BC 0 0 0O|BJO[O0]O
0 0 0 cd | CE 0 0] C| O 0
o | o | o[ o |DE M Jo|lo|lo]|D]|E
EA | EB 0 ED 0 olololol&®E
A| B 0 D 0
M
0 0 ABC 0 0 0 0 0 ABCD ABCE
0 0 0 BCD BCE BCEA 0 0 BCED BCDE
CEA | cEB 0 cED | CDE —_— CDEA CEAB 0 0 0
CDEB
DEA | DEB ! ! ! 0 DEAB DEBC 0 0
! EAB | EBC 0 0 0 0 EABC | EBCD 0

0 0 0 ABCED ABCDE
BCDEA 0 0 0 0

0 CDEAB 0 0 0

0 0 DEABC 0 0

0 0 0 EABCD 0
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O Discovering Hamiltonian Cycles

0 AB 0 0 0
0 o | Bc| o 0 O] B|lO[O]O
0 0 0 cD | CE 0 0 Cl O 0
o [ o | o] o [pE M Jo|lo|lo]|D]|E
EA | EB 0 ED 0 0 0 0 0| E
A| B 0 D 0
M
0 0 ABC 0 0 0 0 0 ABCD ABCE
0 0 0 BCD BCE BCEA 0 0 BCED BCDE
CEA | CEB 0 CED CDE CDEA CEAB 0 0 0
CDEB
DEA | DEB ! ! ! 0 DEAB DEBC 0 0
! BAB | EBC ! 0 0 0 EABC | EBCD 0
M 2 M3
0 0 0 ABCED | ABCDE
BCDEA 0 0 0 0
0 CDEAB 0 0 0
0 0 DEABC 0 0
0 0 0 EABCD 0




PATHS AND CYCLES ...

O Discovering Hamiltonian Cycles

0 0 0 ABCED | ABCDE o|Blo]o]o
BCDEA 0 0 0 0 oo cl]ofo
0 CDEAB 0 0 0 ojojofD|E| M
E
0 0 DEABC 0 0 O1010°
A B 0 D 0
0 0 0 EABCD 0
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O Discovering Hamiltonian Cycles

0 0 0 ABCED | ABCDE o|Blo]o]o
BCDEA 0 0 0 0 oo cl]ofo
0 CDEAB 0 0 0 ojojofD|E| M
E
0 0 DEABC 0 0 O1010°
A B 0 D 0
0 0 0 EABCD 0
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O Discovering Hamiltonian Cycles

0 0 0 ABCED | ABCDE o|[B|of[o]o
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O Discovering Hamiltonian Cycles

0 0 0 ABCED | ABCDE o|[B|of[o]o
BCDEA 0 0 0 0 oo cl]ofo
0 CDEAB 0 0 0 ojojofD|E| M
E
0 0 DEABC 0 0 O1010°
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O Discovering Hamiltonian Cycles

0 0 0 ABCED | ABCDE o|Blo]o]o
BCDEA 0 0 0 0 oo cl]ofo
0 CDEAB 0 0 0 ojojofD|E| M
E
0 0 DEABC 0 0 O1010°
A B 0 D 0
0 0 0 EABCD 0




PATHS AND CYCLES ...

O The Traveling Salesman Problem
® The “TSP” Problem:

Given a list of cities and the distances between each pair of cities, what is the

shortest possible route a salesman should take in order to visit each city and

return to the origin city?
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O The Traveling Salesman Problem

® The “TSP” Problem:
Given a list of cities and the distances between each pair of cities, what is the

shortest possible route a salesman should take in order to visit each city and

return to the origin city?

o Passing only once from each city ...

o Passing more than once from each city ...
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O The Traveling Salesman Problem
®* 'The “ITSP” Problem:

Given a list of cities and the distances between each pair of cities, what is the

shortest possible route a salesman should take in order to visit each city and

return to the origin city?

o Passing only once from each city ...

o Passing more than once from each city ...

 If the graph G is an Euclidean graph (i.e., it holds the triangle inequality
for every three vertices that form a triangle), it is not preferable for the

salesman to pass more than once from the cities already visited.

» The number of Hamiltonian cycles in an Euclidean graphis (n — 1)!/2.

Starting from an origin city, the salesman can move to n — 1 cities, then

ton — 2 cities, to n — 3,..., etc., while the destination counts twice. @
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O The Traveling Salesman Problem
® 'The ““ITSP” Problem:

Given a list of cities and the distances between each pair of cities, what is the

shortest possible route a salesman should take in order to visit each city and

return to the origin city?

o Passing only once from each city ...

o Passing more than once from each city ...
- Brute Force on (n — 1)!/2 Hamiltonian cycles — O (n")

- Dynamic Programming (Branch and Bound) — 0 (n? 2™)

TSP € NP — Complete
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O The Traveling Salesman Problem
* “TSP” Problem Definition:

Given a complete undirected graph G, with weighted edges w;; € N,V (i,j) €

E(G), find a Hamiltonian cycle W in G, such that the sum of the weights on

the edges to be minimum?

min 2 Wi;

(i,j)ew
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O The Traveling Salesman Problem
* “TSP” Problem Definition:

Given a complete undirected graph G, with weighted edges w;; € N,V (i,j) €

E(G) and a number k € N, find if there exists a Hamiltonian cycle W in G,
such that the sum of the weights on the edges to be < k ?
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O The Traveling Salesman Problem
e “TSP” Problem Definition:

Given a complete undirected graph G, with weighted edges w;; € N,V (i,j) €

E(G) and a number k € N, find if there exists a Hamiltonian cycle W in G,
such that the sum of the weights on the edges to be < k ?

TSP € NP — Complete
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O The Traveling Salesman Problem

Proof by contradiction:

If P=NP

P-NP =0

P(1-N)=0

P=0orN=1

We know Pz 0and N = 1
Therefore P = NP
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O The Traveling Salesman Problem

f can't find an efficient algorithm, but neither can all these famous people.
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O The Traveling Salesman Problem

®* Reduction:

The most important method (tool) to prove that a problem P belongs to a

complexity class is the reduction?

J

< Given a problem A we transform the instance p; of problem A to the

instance p, of problem B, such that a solution to p, to provide a solution

top, (e, A< B or A—B).

TSP € NP — Complete
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O The Traveling Salesman Problem

®* Reduction:

The most important method (tool) to prove that a problem P belongs to a

complexity class is the reduction?
A < B or A—B (R reduction)

Q If py is a “YES” instance of problem A, then the R reduction will
produce a “YES” instance p, (i.e., p; = R(p1)) of problem B.

QO If py is a “NO” instance of problem A, then the R reduction will
produce a “NO” instance p, (i.e., p = R(p1)) of problem B.

O Utlizing set-notation we should prove that the R reduction is of
polynomial time and that p; € A iff p; € B (A and B are sets of
instances having the property P, i.c., “YES” - satisfiability of P)

O Then we say that the problem A is reduced to B, or equivalently that we @

can utilize the solution of B to solve A.
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O The Traveling Salesman Problem

®* Reduction:

The most important method (tool) to prove that a problem P belongs to a

complexity class is the reduction?
A < B or A—B (R reduction)

O Lemma: If problem A is reduced to B in polynomial time, and problem
B can be solved in polynomial time, then problem A can be solved in

polynomial time.

P1 R(p1) = p2

> >
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O The Traveling Salesman Problem

®* Reduction:

The most important method (tool) to prove that a problem P belongs to a

complexity class is the reduction?
A < B or A—B (R reduction)

O Lemma: If problem A is reduced to B in polynomial time, and problem
B can be solved in polynomial time, then problem A can be solved in

polynomial time.

YES
D2

>

NO
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O The Traveling Salesman Problem

®* Reduction:

The most important method (tool) to prove that a problem P belongs to a

complexity class is the reduction?
A < B or A—B (R reduction)

O Lemma: If problem A is reduced to B in polynomial time, and problem

B can be solved in polynomial time, then problem A can be solved in

A

polynomial time.

YES

P1 R(p1) = p2

NO
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O The Traveling Salesman Problem

®* Reduction:

The most important method (tool) to prove that a problem P belongs to a

complexity class is the reduction?
A < B or A—B (R reduction)

O Reversing the Lemma: If problem A is reduced to B in polynomial time,
and problem A can be solved in exponential time, then problem B

should be solved in exponential time.

O This form of reduction we will deploy in order to prove that many

problems of graph theory, like TSP in our case, are hard to be solved.
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O The Traveling Salesman Problem

Theorem (TSP € NP-Comlpete):

Given a complete undirected graph G, with weighted edges w;; €
N,V (i,j) € E(G) and a number k € N, find if there exists a Hamiltonian
cycle W in G, such that the sum of the weights on the edges to be < k ?

1. The TSP problem belongs to NP class

2. There exists a known to be NP-Complete problem 4 and 4 < TSP
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O The Traveling Salesman Problem
1. The TSP problem belongs to NP class

+ We will construct a polynomial verifier

+  The veritier (i.e., an algorithm for the problem) has as input a weighted

graph G and an integer number k, while the certificate is a cycle C.
1. First, the cycle has to be checked if indeed is Hamiltonian
2. If not, then it returns “NO” and terminates
3. Else, it checks if the sum of the weights of C’s edges is < k
1. If it is not truth, then it returns “NO” and terminates,
2. Else, it returns “YES”

* The steps followed in the verifier are implemented in polynomial time.
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1. The TSP problem belongs to NP class

+ We will construct a polynomial verifier

+  The veritier (i.e., an algorithm for the problem) has as input a weighted

graph G and an integer number k, while the certificate is a cycle C.
1. First, the cycle has to be checked if indeed is Hamiltonian

2. If not, then it returns “NO” and terminates

3. Else, it checks if the sum of the weights of C’s edges is < k

1. If it is not truth, then it returns “NO” and terminates,

2. Else, it returns “YES”
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O The Traveling Salesman Problem
1. The TSP problem belongs to NP class
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+  The veritier (i.e., an algorithm for the problem) has as input a weighted

graph G and an integer number k, while the certificate is a cycle C.
1. First, the cycle has to be checked if indeed is Hamiltonian
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1. If it is not truth, then it returns “NO” and terminates,

2. Else, it returns “YES”
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O The Traveling Salesman Problem
1. The TSP problem belongs to NP class

+ We will construct a polynomial verifier

+  The veritier (i.e., an algorithm for the problem) has as input a weighted

graph G and an integer number k, while the certificate is a cycle C.
1. First, the cycle has to be checked if indeed is Hamiltonian
2. If not, then it returns “NO” and terminates

3. Else, it checks if the sum of the weights of C’s edges is < k

1. If it is not truth, then it returns “NO” and terminates,

2. Else, it returns “YES”
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O The Traveling Salesman Problem
1. The TSP problem belongs to NP class

+ We will construct a polynomial verifier

+  The veritier (i.e., an algorithm for the problem) has as input a weighted

graph G and an integer number k, while the certificate is a cycle C.
1. First, the cycle has to be checked if indeed is Hamiltonian
2. If not, then it returns “NO” and terminates

3. Else, it checks if the sum of the weights of C’s edges is < k

1. If it is not truth, then it returns “NO” and terminates,

2. Else, it returns “YES”

v
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O The Traveling Salesman Problem
1. The TSP problem belongs to NP class

+ We will construct a polynomial verifier

+  The veritier (i.e., an algorithm for the problem) has as input a weighted

graph G and an integer number k, while the certificate is a cycle C.

1. First, the cycle has to be checked if indeed is Hamiltonian
2. If not, then it returns “NO” and terminates

3. Else, it checks if the sum of the weights of (’s edges is < k
1. If it is not truth, then it returns “NO” and terminates,

2. Else, it returns “YES”

v,
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O The Traveling Salesman Problem
1. The TSP problem belongs to NP class

+ We will construct a polynomial verifier

+  The veritier (i.e., an algorithm for the problem) has as input a weighted

graph G and an integer number k, while the certificate is a cycle C.

1. First, the cycle has to be checked if indeed is Hamiltonian
2. If not, then it returns “NO” and terminates

3. Else, it checks if the sum of the weights of (’s edges is < k
1. If it is not truth, then it returns “NO” and terminates,

2. Else, it returns “YES”

W(C) = 42
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O The Traveling Salesman Problem
2. There exists a known to be NP-Complete problem A and A < TSP

+ We select A =Hamiltonian cycle (HAMC)

+  Hamiltonian cycle in a simple connected graph G is a closed path that

passes from each vertex of G.
- HAMC € NP-Complete

- HAMC < TSP
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O The Traveling Salesman Problem
2. There exists a known to be NP-complete problem A and A < TSP

Let pq an instance of the HAMC by the graph ¢ = (V, E)

We construct a new complete weighted graph G' = (V', E"): V' = V and
define a weight function w: E" — {1,2} such that

1,if (i,j) €EE

V(i) € E'wy = {2, if (i) €

Finally we set k = |V| 6=(V E)

In order to complete the reduction we should prove that the graph G
has HAMC if f the produced graph G’ has HAMC < K = |V|
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O The Traveling Salesman Problem A
2. The graph G has HAMC if f the produce graph G’ has HAMC < K= | V|

=)

+ Let G has a Hamiltonian cycle W.

«  Then, G’ has also the Hamiltonian cycle W since it has the same vertex
set with G while E € E’.

- Since all the vertices of W in G’ have weight 1it follows that cycle
W has weight in G’ equal to k = |V|.
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O The Traveling Salesman Problem A
2. The graph G has HAMC if f the produce graph G’ has HAMC < K= | V|

(=)

- Let G has a Hamiltonian cycle W with weight < k = |V].

»  Then, the cycle W can not include any of the edges of E’ that do not
belong to E, as they have weight 2 and hence the |V| edges of W can
not have total weight < |V/|.

+ Hence, the initial graph G has a Hamiltonian cycle W
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O The Traveling Salesman Problem
2. The correctness of the reduction HAMC < TSP has been proven.

+ Now it lefts to prove that the complexity of the reduction is polynomial.

G=(V.E) G'=(V'E)
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O The Traveling Salesman Problem
2. The correctness of the reduction HAMC < TSP has been proven.

+ Now it lefts to prove that the complexity of the reduction is polynomial.

G=(V.E) G'=(V'E)

- Indeed the graph G’ can be produced from G in polynomial time!

- Hence, since

o TSP € NP and
— TSP € NP — complete

o HAMC < TSP
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O Decision TSP & Optimization TSP
* Decision TSP: Given a complete undirected graph G, with Welghted edges o

w;j € N,V (i,j) € E(G) and a number k € N, find if there exists a
Hamiltonian cycle W in G, such that the sum of the weights on the edges to

be< k?

(ij)ew

Optimization TSP: Given a complete undirected graph G, with weighted
cdges w;j € N,V (i,j) € E(G), find a Hamiltonian cycle Win G, such

that the sum of the weights on the edges to be minimum?

min 2 Wij @

(L) ew
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O Decision TSP & Optimization TSP

* Decision TSP: Given a complete undirected graph G, with Welghted edges s
w;j € N,V (i,j) € E(G) and a number k € N, find if there exists a

Hamiltonian cycle W in G, such that the sum of the weights on the edges to
be< k?

® The Traveling Salesman Problem has been proven to be NP-Complete.

® There does not exist an algorithm that solves the Decision TSP 1n

polynomial time, and hence neither for the Optimization TSP.
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O Decision TSP & Optimization TSP

Decision TSP: Given a complete undirected graph G, with weighte d . dges /A

w;j € N,V (i,j) € E(G) and a number k € N, find if there exists a
Hamiltonian cycle W in G, such that the sum of the weights on the edges to
be< k?

The Traveling Salesman Problem has been proven to be NP-complete.

There does not exist an algorithm that solves the Decision TSP in

polynomial time, and hence neither for the Optimization TSP.

Why?
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O Decision TSP & Optimization TSP

* Decision TSP: Given a complete undirected graph G, with Welghted edges s

w;j € N,V (i,j) € E(G) and a number k € N, find if there exists a
Hamiltonian cycle W in G, such that the sum of the weights on the edges to

be< k?

(ij)ew

The Traveling Salesman Problem has been proven to be NP-complete.

® There does not exist an algorithm that solves the Decision TSP 1n

polynomial time, and hence neither for the Optimization TSP.

If we design an algorithm that solves the Decision TSP 1in

polynomial time, would it solve the Optimization TSP in polynomial time

too?
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O Decision TSP & Optimization TSP

* Decision TSP: Given a complete undirected graph G, with Welghted edges s
w;j € N,V (i,j) € E(G) and a number k € N, find if there exists a

Hamiltonian cycle W in G, such that the sum of the weights on the edges to
be< k?

® Having an algorithm that solves the Decision TSP in polynomial time, would

it solve the Optimization TSP in polynomial time too?

* If we had an algorithm let A4 for the Decision TSP problem, then it would

return “YES” if there would exist Hamiltonian cycle of weight < k, or it

would return “NO” otherwise. @
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O Decision TSP & Optimization TSP gy
* Decision TSP: Given a complete undirected graph G, with Welghted edges o
w;j € N,V (i,j) € E(G) and a number k € N, find if there exists a

Hamiltonian cycle W in G, such that the sum of the weights on the edges to

be< k?

(i,j)ew

® Having an algorithm that solves the Decision TSP in polynomial time, would

it solve the Optimization TSP in polynomial time too?

* Let M the maximum weight of the edges of graph G, we search the value of

k in the range [0, nM] and apply the algorithm Ay
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O Decision TSP & Optimization TSP

* Decision TSP: Given a complete undirected graph G, with Welghted edges o
w;j € N,V (i,j) € E(G) and a number k € N, find if there exists a

Hamiltonian cycle W in G, such that the sum of the weights on the edges to

be< k?

(ij)ew

® Having an algorithm that solves the Decision TSP in polynomial time, would

it solve the Optimization TSP in polynomial time too?

* Algorithm A,y (Linear Search)
[0,1,2,3,...m—1,m, m+1,..,nM — 1,nM]

* k=0,If A4 returns “NO”, then k + +
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O Decision TSP & Optimization TSP

* Decision TSP: Given a complete undirected graph G, with Welghted edges o
w;j € N,V (i,j) € E(G) and a number k € N, find if there exists a

Hamiltonian cycle W in G, such that the sum of the weights on the edges to

be< k?

(ij)ew

® Having an algorithm that solves the Decision TSP in polynomial time, would

it solve the Optimization TSP in polynomial time too?

* Algorithm A,y (Linear Search)
[0,1,2,3,...m—1m, m+1,..,nM — 1,nM]

° k=11f A4 returns “NO”, then k + +
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O Decision TSP & Optimization TSP

* Decision TSP: Given a complete undirected graph G, with Welghted edges o
w;j € N,V (i,j) € E(G) and a number k € N, find if there exists a

Hamiltonian cycle W in G, such that the sum of the weights on the edges to

be< k?

(ij)ew

® Having an algorithm that solves the Decision TSP in polynomial time, would

it solve the Optimization TSP in polynomial time too?

* Algorithm A,y (Linear Search)
[0,1,2,3,...m—1m,m+1,..,nM — 1,nM]

° k=21f Ajreturns “NO”, then k + +
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O Decision TSP & Optimization TSP

* Decision TSP: Given a complete undirected graph G, with Welghted edges o
w;j € N,V (i,j) € E(G) and a number k € N, find if there exists a

Hamiltonian cycle W in G, such that the sum of the weights on the edges to

be< k?

(ij)ew

® Having an algorithm that solves the Decision TSP in polynomial time, would

it solve the Optimization TSP in polynomial time too?

* Algorithm A,y (Linear Search)
0,1,2,3,...m—1,m m+1,..,nM— 1,nM]

°* k=m-—1,1f Agreturns “NO”, then k + +
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O Decision TSP & Optimization TSP

* Decision TSP: Given a complete undirected graph G, with Welghted edges o
w;j € N,V (i,j) € E(G) and a number k € N, find if there exists a

Hamiltonian cycle W in G, such that the sum of the weights on the edges to

be< k?

(ij)ew

® Having an algorithm that solves the Decision TSP in polynomial time, would

it solve the Optimization TSP in polynomial time too?

* Algorithm A,y (Linear Search)
0,1,2,3,...m—1m, m+1,..,nM—1,nM|

* k=m,If A, returns “YES”, then exit
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O Decision TSP & Optimization TSP

* Decision TSP: Given a complete undirected graph G, with Welghted edges o
w;j € N,V (i,j) € E(G) and a number k € N, find if there exists a

Hamiltonian cycle W in G, such that the sum of the weights on the edges to

be< k?

(i,j)ew

® Having an algorithm that solves the Decision TSP in polynomial time, would

it solve the Optimization TSP in polynomial time too?

* Algorithm A,y (Linear Search)
[0,1,2,3,...m—1,m m+1,..,nM —1,nM]

* Algorithm Ay will be executed at most O(nM) times (worst case)

Hence, if Aq is polynomial then Ay is polynomial too.




PATHS AND CYCLES ...

O Decision TSP & Optimization TSP

* Decision TSP: Given a complete undirected graph G, with Welghted edges s
w;j € N,V (i,j) € E(G) and a number k € N, find if there exists a

Hamiltonian cycle W in G, such that the sum of the weights on the edges to

be< k?

(i,j)ew

® Having an algorithm that solves the Decision TSP in polynomial time, would

it solve the Optimization TSP in polynomial time too?

* Algorithm A,y; (Binary Search)
0,1,2,3,... m—1m,m+1,...nM—1,nM]
° K =|[(right — left)/2], ...
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O Decision TSP & Optimization TSP

* Decision TSP: Given a complete undirected graph G, with weighted edgess /A
w;j € N,V (i,j) € E(G) and a number k € N, find if there exists a

Hamiltonian cycle W in G, such that the sum of the weights on the edges to

be< k?

(i,j)ew

® Having an algorithm that solves the Decision TSP in polynomial time, would

it solve the Optimization TSP in polynomial time too?

* Algorithm A,y; (Binary Search)

[0,1,2,3,..,m—1,m,m+1,..,.nM — 1,nM]

°* K =|[(right — left)/2], ... Algorithm A, in worst cast will be executed @
O(lognM) times, and hence if Ay is polynomial, then A, will be
polynomial too.
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O Decision TSP & Optimization TSP L
* Decision TSP: Given a complete undirected graph G, with Welghted edges o
w;j € N,V (i,j) € E(G) and a number k € N, find if there exists a

Hamiltonian cycle W in G, such that the sum of the weights on the edges to
be< k?

® The performance of the Optimization TSP 1is close enough to the

performance of the Decision TSP.
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0 3SAT € NP-complete (SAT < 3SAT)

® SAT Problem: We are given a Boolean formula in conjunctive form:

(xVYVZVW)AXVY)ANZVXVWVDPVY) A(XVYVZ)
and we need to find a satisfying truth assignment (or to claim that there does

not exist any)

* 3SAT Problem:
xVYyVZ)AWVYANYVZIA(PVX)AN(XVYVZ)
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0 3SAT € NP-complete (SAT < 3SAT)

SAT Problem: We are given a Boolean formula in conjunctive form:

(xVYVZVW)AXVY)ANZVXVWVDPVY) A(XVYVZ)
and we need to find a satisfying truth assignment (or to claim that there does

not exist any)

* 3SAT Problem:

XVYVZ)ANXVYVZIAXVYVZ)AN(XVY)

Independent-Set: We are given a graph of n vertices and an integer k.

We are asked to find an LS. of k

vertices, where each pair of vertices in

the set are disjoint, or to point out that

there does not exist such a set.
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0 3SAT € NP-complete (3SAT < Independent Set)
* 3SAT Problem: SR

XVYVZ)A(XVYVZ)AN(XVYVZ)AN(XVY)

* Independent-Set:

* Correlation between Boolean Logic and Graphs

* In a satisfying truth assignment, an element from each term should

be true, and hence since X could be chosen to be true in a term we @

are not allowed to set X to be true in another term.
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0 3SAT € NP-complete (3SAT < Independent Set)
°* 3SAT Problem:

XVYVZ)A(XVYVZ)AN(XVYVZ)AN(XVY)

* Independent-Set:

* Correlation between Boolean Logic and Graphs

(xvyvz) —
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053,

0 3SAT € NP-complete (3SAT < Independent Set) r T
* 3SAT Problem and Independent Set: T

XVYVZ)A(XVYVZ)AN(XVYVZ)AN(XVY)

* In the produced graph, let G, each Independent Set contains at most

one element from each triangle/term.
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29ad

0 3SAT € NP-complete (3SAT < Independent Set)
* 3SAT Problem and Independent Set:

(XVyVvz)

* In the produced graph, let G, each Independent Set contains at most

one element from each triangle/term.
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29ad

0 3SAT € NP-complete (3SAT < Independent Set)
* 3SAT Problem and Independent Set:

(xVyVz)

9‘9

* In the produced graph, let G, each Independent Set contains at most

one element from each triangle/term.
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0 3SAT € NP-complete (3SAT < Independent Set) >
* 3SAT Problem and Independent Set:

(xVyVz)

* In the produced graph, let G, each Independent Set contains at most

one element from each triangle/term.
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e
Looca

0 3SAT € NP-complete (3SAT < Independent Set) £ "
* 3SAT Problem and Independent Set: S

(xVYy)
&
®

* In the produced graph, let G, each Independent Set contains at most

one element from each triangle/term.
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053,

0 3SAT € NP-complete (3SAT < Independent Set) " ek 1 >
* 3SAT Problem and Independent Set: T

XVYVZ)A(XVYVZ)AN(XVYVZ)AN(XVY)

PSP AN AN

* In the produced graph, let G, each Independent Set contains at most

one element from each triangle/term.




------
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o3,

0 3SAT € NP-complete (3SAT < Independent Set) >
* 3SAT Problem and Independent Set:

XVYVZ)A(XVYVZ)AN(XVYVZ)AN(XVY)

PSP AN AN

* In the produced graph, let G, each Independent Set contains at most

one element from each triangle/term.

* In order to set an option from each triangle/term, we set k =the

cardinality of the terms.

® It is needed a method that would deter us from selecting opposite @

elements, i.e., X and X.
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053,

0 3SAT € NP-complete (3SAT < Independent Set) £i
* 3SAT Problem and Independent Set: S

XVYVZ)A(XVYVZ)AN(XVYVZ)AN(XVY)

PSP AN AN
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053,

0 3SAT € NP-complete (3SAT < Independent Set) £i
* 3SAT Problem and Independent Set: S

XVYVZ)A(XVYVZ)AN(XVYVZ)AN(XVY)

Lo o Lo &
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053,

o 3SAT € NP-complete (3SAT < Independent Set) “7';
* 3SAT Problem and Independent Set:

XVYVZ)A(XVYVZ)AN(XVYVZ)AN(XVY)

Given an instance [ of problem 3SAT, construct an instance (G, k) of

the problem Independent Set. @
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o3,

0 3SAT € NP-complete (3SAT < Independent Set) £ "
* 3SAT Problem and Independent Set: o

XVYVZ)A(XVYVZ)AN(XVYVZ)AN(XVY)

x = false,y = true,z = true

Given an instance [ of problem 3SAT, construct an instance (G, k) of

the problem Independent Set.
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o3,

0 3SAT € NP-complete (3SAT < Independent Set) £ "
* 3SAT Problem and Independent Set: o

XVYVZ)A(XVYVZ)AN(XVYVZ)AN(XVY)

x = false,y = false,z = true

Given an instance [ of problem 3SAT, construct an instance (G, k) of

the problem Independent Set.
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o d3,

0 3SAT € NP-complete (3SAT < Independent Set) 7% /4 i
* 3SAT Problem and Independent Set: S

XVYVZ)A(XVYVZ)AN(XVYVZ)AN(XVY)

Given an instance [ of problem 3SAT, construct an instance (G, k) of

the problem Independent Set. - ———

- _—

( Polynomial Time : @
-y L — -
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0 3SAT € NP-complete (3SAT < Independent Set) I Jag :
* 3SAT Problem and Independent Set: S

We should prove that 3SAT < IS
xXVYyVZ)AXVYVZ)AXVYVZ)AN(XVY)

* (&) Given an Independent Set S with k vertices in the graph G, we can

always get a satisfying truth assignment in I,

* (=) If the graph G has no Independent Set S of size k, then the logical

formula [ is not satisfiable.
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29ad

0 3SAT € NP-complete (3SAT < Independent Set) =3 /#
* 3SAT Problem and Independent Set: T

We should prove that 3SAT < IS
xXVYyVZ)AXVYVZ)AXVYVZ)AN(XVY)

* (&) Given an Independent Set S with k vertices in the graph G, we can

always get a satisfying truth assignment in I,

For each variable x, set S contains no vertices with labels x and X. We assign
x = true if s contains vertex with label x and x = false if S contains
vertex with label X. Since |S| = k, it should contain a vertex per term. Such @

an assignment satisfies all terms.




......
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29ad

0 3SAT € NP-complete (3SAT < Independent Set) " r g '
* 3SAT Problem and Independent Set: S

We should prove that 3SAT < IS
xXVYyVZ)AXVYVZ)AXVYVZ)AN(XVY)

®* (=) If the graph G has no Independent Set S of size k, then the logical

formula [ is not satisfiable.

It is adequate to prove that if the logical formula [ has a satisfying truth
assignment, then G has an Independent Set S of size k. Hence, for each
term of the 3SAT we select an element which its value in the satistying truth @

assignment is true and add the corresponding vertex in S .
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O Approximation Algorithms on TSP

Heuristic Sub-Optimal Solutions:

1.

Greedy TSP with DFS

Greedy TSP with Bilateral Path Extension (Nearest Insertion)
Greedy TSP with Closest Insertion (Cheapest Insertion)

TSP with Minimum Spanning Tree

TSP with Vertex Substitution
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O Approximation Algorithms on TSP

* Heuristic Sub-Optimal Solutions:

1. Greedy TSP with DFS
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O Approximation Algorithms on TSP

Heuristic Sub-Optimal Solutions:

Greedy TSP with DFS

1)
2)
3)
)

5)

Select a random vertex v

seti < land [(v) < 0

while (3 unmarked vertices)
select the edge with the less weight, from the edges that
connect vertex vV with an unmarked vertex w.

set (W) «iand v « w.
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O Approximation Algorithms on TSP

o .
Lol

Heuristic Sub-Optimal Solutions:

1.

g

Greedy TSP with Bilateral Path Extension (Nearest Insertion)
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O Approximation Algorithms on TSP

Heuristic Sub-Optimal Solutions:

Greedy TSP with Bilateral Path Extension (Nearest Insertion)

1)
2)
3)

)

0)
7)

Set [ «— 1.
Select a random peak vy and consider the path P; = v
If i =n)
C = P, is a Hamilton circle,
Else
select the lightest edge e adjacent to one of the two terminal vertices
of P; such that no cycle with the peaks of P; to be created.
Construct the path Pj41 = (P; U e)
Seti«—1 + 1.
Goto step 3
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O Approximation Algorithms on TSP

* Heuristic Sub-Optimal Solutions:

Greedy TSP with Bilateral Path Extension (Nearest Insertion)

3-6 2

3-6-5 38
3-6-5-4 59
3-6-5-4-2 129
3-6-5-4-2-1 142

3-6-5-4-2-1-3 193
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O Approximation Algorithms on TSP

Heuristic Sub-Optimal Solutions:

1.

&

Greedy TSP with Closest Insertion (Cheapest Insertion)
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O Approximation Algorithms on TSP

Heuristic Sub-Optimal Solutions:

Greedy TSP with Closest Insertion (Cheapest Insertion)

1)
2)
3)

)

0)
7)

Set i «— 1.
Select a random peak vy and consider the path C; = v
If i =n)
C = C,, is 2 Hamilton circle
Else
search for a vertex v; that & in the circle C; and are closest to a pair
in sequential vertices {v;, vi;1} € C;.
Construct cycle Cj44 inserting the vertex v; between v; and vj4q.
Seti<«— 1 + 1.
Goto step 3
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O Approximation Algorithms on TSP

* Heuristic Sub-Optimal Solutions:
Greedy TSP with Closest Insertion (Cheapest Insertion)

3

3-6-3

3-6-5-3

3-6-5-4-3

3-6-1-5-4-3
3-6-2-1-5-4-3 192
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O Approximation Algorithms on TSP

* Heuristic Sub-Optimal Solutions:

1.

4. TSP with Minimum Spanning Tree
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O Approximation Algorithms on TSP

* Heuristic Sub-Optimal Solutions:

TSP with Minimum Spanning Tree

1)  Find a minimum spanning tree T

2)  Perform a Depth First Search

3 If vy, v,, ..., Up is the sequence of visiting the vertices of T from step 2,
then the Hamiltonian cycle is v;, V5, ..., Up, V1.
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O Approximation Algorithms on TSP

Heuristic Sub-Optimal Solutions:

TSP with Minimum Spanning Tree

1)  Find a minimum spanning tree T

2)  Perform a Depth First Search

3 If vy, v,, ..., Up is the sequence of visiting the vertices of T from step 2,
then the Hamiltonian cycle is v;, V5, ..., Up, V1.
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O Approximation Algorithms on TSP

* Heuristic Sub-Optimal Solutions:

TSP with Minimum Spanning Tree

1)  Find a minimum spanning tree T

2)  Perform a Depth First Search

3 If vy, v,, ..., Up is the sequence of visiting the vertices of T from step 2,
then the Hamiltonian cycle is v;, V5, ..., Up, V1.

(3,1,2,5,4,6,3) 212

(1,2,3,5,4,6,1) 237
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O Approximation Algorithms on TSP

* Heuristic Sub-Optimal Solutions:

1.

TSP with Vertex Substitution

ot




PATHS AND CYCLES ...

O Approximation Algorithms on TSP

Heuristic Sub-Optimal Solutions:

TSP with Vertex Substitution

1) Consider a Hamiltonian cycle € = (vq, vy, ..., vy, v1)
2) Vij:1<i+ 1<j <n,obtainanew Hamiltonian cycle
Cij = (V1,V2, o Vi, Vj, Vo1, ) Vi1, Vig1, Vita, - U, V1) deleting the edges
(vi, Vi41) and (v}, v41) and adding the edges (v, v) and (Vi41, vj41)-
3) If (for some i, j occurs w(v;, v;) + w(Vis1,Vjr1) < W@y, Vip1) + w(vj,vj41))
set C = Cj ;.
4 Goto step 2.
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O Approximation Algorithms on TSP

* Heuristic Sub-Optimal Solutions:

TSP with Vertex Substitution

1) Consider a Hamiltonian cycle € = (vq, vy, ..., vy, v1)
2) Vij:1<i+ 1<j <n,obtainanew Hamiltonian cycle
Cij = (V1,V2, o Vi, Vj, Vo1, ) Vi1, Vig1, Vita, - U, V1) deleting the edges
(vi, Vi41) and (v}, v41) and adding the edges (v, v) and (Vi41, vj41)-
3) If (for some i, j occurs w(v;, v;) + w(Vis1,Vjr1) < W@y, Vip1) + w(vj,vj41))

set C = Cj ;.

4 Goto step 2.

(3,4,5,6,1,2,3) 237
(3,6,5,4,1,2,3) 210
(3,6,5,4,2,1,3) 193

(3,6,1,2,4,5,3) 192
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O Infinite Graphs E
* Vertices ate points of the plane with integer coordinates, while the edges join |

vertices at a distance of 1

* In infinite graphs there is no Eulerian circuit or Hamiltonian circle, but there

are corresponding paths

* An “one-way”’ Eulerian / Hamiltonian path is the path that starts from a

vertex and expands infinitely (space filling curve)

Peano/z-order Hilbert
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O Magic Squares

* The rows, columns and diagonals have an equal sum

16]3 213 23]1]220]19
RERET 5 [11]13]15]21

8 |12]17/10] 18

4115114 1 7 |25|24] 6] 3

* Magic squares algorithms (odd order):

o Bachet method (with rhombus)
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O Magic Squares

* The rows, columns and diagonals have an equal sum

16]3 213 23]1]220]19
s 1011 8 22169 14| 4
S RERET 5 [11]13]15]21

8 |12]17/10] 18
411511411 7 |25|24] 6] 3

* Magic squares algorithms (odd order):

o Bachet method (with rhombus)

o By tricking the three random numbers (eg 3,2,5)
o  Replacing unnecessary numbers 3-17 in positions 1-9

o Adding the same number to each position
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O Magic Squares

The rows, columns and diagonals have an equal sum

16| 3 |2 |13 23| 1|2 20|19
5 10/11] 8 22 1169 (14| 4
567112 11{13|15] 21

5
8 |12|17|10| 18
7

4115|141 x5l 6| 3

Magic is called the graph where the sum of their inscriptions of edges that

fall on all nodes is equal

Theorem: if a Dbipartite graph can be decomposed into 2

Hamiltonian circles, then the graph is magical

Antimagic is called the graph where the sums of inscriptions of the edges

of all vertices 1s not equal.

Number of magic objects (squares, dominoes, polygons, etc)




