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• A walk is a sequence of vertices and edges of a graph i.e. if we traverse a

graph then we get a walk. (Vertices and Edges can be repeated)

1 → 2 → 3 → 4 → 2 → 1 → 3 is a walk
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• A Trail is a walk in which no edge is repeated then we get a trail. (Vertices

can be repeated but Edges can not be repeated)

1 → 3 → 8 → 6 → 3 → 2 is trail

1 → 3 → 8 → 6 → 3 → 2 → 1 is a closed trail
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• A Circuit is the traversal of a graph such that not an edge is repeated but

vertex can be repeated and it is closed also i.e. it is a closed trail. (Vertices can

be repeated, Edges can not be repeated)

1 → 2 → 4 → 3 → 6 → 8 → 3 → 1 is a circuit
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• A Path is a trail in which neither vertices nor edges are repeated i.e. if we

traverse a graph such that we do not repeat a vertex and nor we repeat an

edge. (Vertices can not be repeated, Edges can not be repeated).

6 → 8 → 3 → 1 → 2 → 4 is a Path



PATHS AND CYCLES …

 Walks, Trails and Paths 

6

• A Cycle is the traversal of a graph such that we do not repeat a vertex nor

we repeat a edge but the starting and ending vertex must be same i.e. we

can repeat starting and ending vertex only then we get a cycle. (Vertices

can not be repeated, Edges can not be repeated) Cycle is a closed path.

1→2 → 4 → 3 → 1 is a cycle.
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• APPLICATION: Prove that if two vertices 𝑣, 𝑤 are connected with a walk,

then they are connected with a path.
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• APPLICATION: Prove that if two vertices 𝑣, 𝑤 are connected with a walk,

then they are connected with a path.

o Let 𝑣,… , 𝑢, … , 𝑢, … , 𝑤, and let a vertex 𝑢 that appears two or

more times.
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• APPLICATION: Prove that if two vertices 𝑣, 𝑤 are connected with a walk,

then they are connected with a path.

o Let 𝑣,… , 𝑢, … , 𝑢, … , 𝑤, and let a vertex 𝑢 that appears two or

more times.

o Removing from the walk the vertices that appear between the first and

the last appearance of vertex 𝑢 (including the last appearance of 𝑢) it

results to a walk where u appears only once.
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• APPLICATION: Prove that if two vertices 𝑣, 𝑤 are connected with a walk,

then they are connected with a path.

o Let 𝑣,… , 𝑢, … , 𝑢, … , 𝑤, and let a vertex 𝑢 that appears two or

more times.

o Removing from the walk the vertices that appear between the first and

the last appearance of vertex 𝑢 (including the last appearance of 𝑢) it

results to a walk where u appears only once.

o Iterate over all vertices with multiple instances on the walk.
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• The length of a walk/trail/path equals the cardinality of the included edges.
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• The length of a walk/trail/path equals the cardinality of the included edges.

𝑢1

𝑢6

𝑢7

𝑢5𝑢4
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𝑢3

𝐴1 = (𝑣3, 𝑣4, 𝑣5, 𝑣7, 𝑣2, 𝑣4, 𝑣5, 𝑣2, 𝑣1)
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• The length of a walk/trail/path equals the cardinality of the included edges.

𝐴1 = 𝑣3, 𝑣4, 𝑣5, 𝑣7, 𝑣2, 𝑣4, 𝑣5, 𝑣2, 𝑣1
𝐴2 = 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7, 𝑣5, 𝑣4, 𝑣2, 𝑣1
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• The length of a walk/trail/path equals the cardinality of the included edges.

𝐴1 = 𝑣3, 𝑣4, 𝑣5, 𝑣7, 𝑣2, 𝑣4, 𝑣5, 𝑣2, 𝑣1
𝐴2 = 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7, 𝑣5, 𝑣4, 𝑣2, 𝑣1
𝐴3 = 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7, 𝑣5, 𝑣2, 𝑣1
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• The length of a walk/trail/path equals the cardinality of the included edges.

𝐴1 = 𝑣3, 𝑣4, 𝑣5, 𝑣7, 𝑣2, 𝑣4, 𝑣5, 𝑣2, 𝑣1
𝐴2 = 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7, 𝑣5, 𝑣4, 𝑣2, 𝑣1
𝐴3= 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7, 𝑣5, 𝑣2, 𝑣1
𝐴4= 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7, 𝑣2, 𝑣1
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• The length of a walk/trail/path equals the cardinality of the included edges.

• Edge Disjoint Paths:
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• The length of a walk/trail/path equals the cardinality of the included edges.

• Distance between two vertices:

The length of a shortest path from 𝑢 to 𝑣.

o Non-negative: 𝑑𝑖𝑠𝑡(𝑣, 𝑢) > 0 for 𝑣 ≠ 𝑢 (𝑑𝑖𝑠𝑡(𝑣, 𝑢) = 0, 𝑖𝑓 𝑣 = 𝑢)

o Symmetrical: 𝑑𝑖𝑠𝑡(𝑣, 𝑢) = 𝑑𝑖𝑠𝑡(𝑢, 𝑣)

o Triangle Inequality: 𝑑𝑖𝑠𝑡 𝑣, 𝑢 + 𝑑𝑖𝑠𝑡 𝑢,𝑤 ≥ 𝑑𝑖𝑠𝑡(𝑣, 𝑤)
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Compute Distances 

between vertices of 

simple graphs 

(Moore, 1959)
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Compute Distances 

between vertices of 

weighted graphs 

(Dijkstra, 1959)
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• Eccentricity is the maximum distance from vertex 𝑣 to any other vertex

𝑢 of the graph. → 𝑒 𝑣 = max 𝑑 𝑣, 𝑢 𝑢 ∈ 𝑉(𝐺)}

• Radius of a graph 𝐺, radius(G) is the minimum eccentricity exhibited

across the vertices of 𝐺. → 𝑟𝑎𝑑𝑖𝑢𝑠 𝐺 = min 𝑒 𝑣 𝑣 ∈ 𝑉(𝐺)}

• Diameter of a graph 𝐺 , is the maximum eccentricity exhibited

across the vertices of 𝐺 G. → 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝐺 = max 𝑒 𝑣 𝑣 ∈ 𝑉(𝐺)}
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𝒓𝒂𝒅𝒊𝒖𝒔 𝑮 ≤ 𝒅𝒊𝒂𝒎𝒆𝒕𝒆𝒓 𝑮 ≤ 𝟐 ⋅ 𝒓𝒂𝒅𝒊𝒖𝒔(𝑮)

• Eccentricity is the maximum distance from vertex 𝑣 to any other vertex

𝑢 of the graph. → 𝑒 𝑣 = max 𝑑 𝑣, 𝑢 𝑢 ∈ 𝑉(𝐺)}

• Radius of a graph 𝐺, radius(G) is the minimum eccentricity exhibited

across the vertices of 𝐺. → 𝑟𝑎𝑑𝑖𝑢𝑠 𝐺 = min 𝑒 𝑣 𝑣 ∈ 𝑉(𝐺)}

• Diameter of a graph 𝐺 , is the maximum eccentricity exhibited

across the vertices of 𝐺 G. → 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝐺 = max 𝑒 𝑣 𝑣 ∈ 𝑉(𝐺)}
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?

𝒓𝒂𝒅𝒊𝒖𝒔 𝑮 ≤ 𝒅𝒊𝒂𝒎𝒆𝒕𝒆𝒓 𝑮 ≤ 𝟐 ⋅ 𝒓𝒂𝒅𝒊𝒖𝒔(𝑮)

• Eccentricity is the maximum distance from vertex 𝑣 to any other vertex

𝑢 of the graph. → 𝑒 𝑣 = max 𝑑 𝑣, 𝑢 𝑢 ∈ 𝑉(𝐺)}

• Radius of a graph 𝐺, radius(G) is the minimum eccentricity exhibited

across the vertices of 𝐺. → 𝑟𝑎𝑑𝑖𝑢𝑠 𝐺 = min 𝑒 𝑣 𝑣 ∈ 𝑉(𝐺)}

• Diameter of a graph 𝐺 , is the maximum eccentricity exhibited

across the vertices of 𝐺 G. → 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝐺 = max 𝑒 𝑣 𝑣 ∈ 𝑉(𝐺)}



PATHS AND CYCLES …

 Distances

28

?

𝒓𝒂𝒅𝒊𝒖𝒔 𝑮 ≤ 𝒅𝒊𝒂𝒎𝒆𝒕𝒆𝒓 𝑮 ≤ 𝟐 ⋅ 𝒓𝒂𝒅𝒊𝒖𝒔(𝑮)

• Eccentricity is the maximum distance from vertex 𝑣 to any other vertex

𝑢 of the graph. → 𝑒 𝑣 = max 𝑑 𝑣, 𝑢 𝑢 ∈ 𝑉(𝐺)}

• Radius of a graph 𝐺, radius(G) is the minimum eccentricity exhibited

across the vertices of 𝐺. → 𝑟𝑎𝑑𝑖𝑢𝑠 𝐺 = min 𝑒 𝑣 𝑣 ∈ 𝑉(𝐺)}

• Diameter of a graph 𝐺 , is the maximum eccentricity exhibited

across the vertices of 𝐺 G. → 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝐺 = max 𝑒 𝑣 𝑣 ∈ 𝑉(𝐺)}
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𝒓𝒂𝒅𝒊𝒖𝒔 𝑮 ≤ 𝒅𝒊𝒂𝒎𝒆𝒕𝒆𝒓 𝑮 ≤ 𝟐 ⋅ 𝒓𝒂𝒅𝒊𝒖𝒔(𝑮)

• Eccentricity is the maximum distance from vertex 𝑣 to any other vertex

𝑢 of the graph. → 𝑒 𝑣 = max 𝑑 𝑣, 𝑢 𝑢 ∈ 𝑉(𝐺)}

• Radius of a graph 𝐺, radius(G) is the minimum eccentricity exhibited

across the vertices of 𝐺. → 𝑟𝑎𝑑𝑖𝑢𝑠 𝐺 = min 𝑒 𝑣 𝑣 ∈ 𝑉(𝐺)}

• Diameter of a graph 𝐺 , is the maximum eccentricity exhibited

across the vertices of 𝐺 G. → 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝐺 = max 𝑒 𝑣 𝑣 ∈ 𝑉(𝐺)}
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𝒓𝒂𝒅𝒊𝒖𝒔 𝑮 ≤ 𝒅𝒊𝒂𝒎𝒆𝒕𝒆𝒓 𝑮 ≤ 𝟐 ⋅ 𝒓𝒂𝒅𝒊𝒖𝒔(𝑮)

• Eccentricity is the maximum distance from vertex 𝑣 to any other vertex

𝑢 of the graph. → 𝑒 𝑣 = max 𝑑 𝑣, 𝑢 𝑢 ∈ 𝑉(𝐺)}

• Radius of a graph 𝐺, radius(G) is the minimum eccentricity exhibited

across the vertices of 𝐺. → 𝑟𝑎𝑑𝑖𝑢𝑠 𝐺 = min 𝑒 𝑣 𝑣 ∈ 𝑉(𝐺)}

• Diameter of a graph 𝐺 , is the maximum eccentricity exhibited

across the vertices of 𝐺 G. → 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝐺 = max 𝑒 𝑣 𝑣 ∈ 𝑉(𝐺)}
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• APPLICATION: 

Prove that in each graph it holds that: 𝒓𝒂𝒅𝒊𝒖𝒔(𝑮)≤𝒅𝒊𝒂𝒎𝒆𝒕𝒆𝒓(𝑮)≤𝟐⋅𝒓𝒂𝒅𝒊𝒖𝒔(𝑮)
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• APPLICATION: 

Prove that in each graph it holds that: 𝒓𝒂𝒅𝒊𝒖𝒔(𝑮)≤𝒅𝒊𝒂𝒎𝒆𝒕𝒆𝒓(𝑮)≤𝟐⋅𝒓𝒂𝒅𝒊𝒖𝒔(𝑮)

o By definition it holds that the left part is truth.
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• APPLICATION: 

Prove that in each graph it holds that: 𝒓𝒂𝒅𝒊𝒖𝒔(𝑮)≤𝒅𝒊𝒂𝒎𝒆𝒕𝒆𝒓(𝑮)≤𝟐⋅𝒓𝒂𝒅𝒊𝒖𝒔(𝑮)

o By definition it holds that the left part is truth.

o For the right part, we assume that 

 there exist two vertices 𝑥, 𝑦: 𝑑𝑖𝑠𝑡(𝑥, 𝑦) = 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟(𝐺)

 Let 𝑧 a vertex: the largest shortest path from 𝑧 has length equal the 

radius of  𝐺 → 𝑒(𝑧) = 𝑟𝑎𝑑𝑖𝑢𝑠(𝐺)
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• APPLICATION: 

Prove that in each graph it holds that: 𝒓𝒂𝒅𝒊𝒖𝒔(𝑮)≤𝒅𝒊𝒂𝒎𝒆𝒕𝒆𝒓(𝑮)≤𝟐⋅𝒓𝒂𝒅𝒊𝒖𝒔(𝑮)

o By definition it holds that the left part is truth.

o For the right part, we assume that 

 there exist two vertices 𝑥, 𝑦: 𝑑𝑖𝑠𝑡(𝑥, 𝑦) = 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟(𝐺)

 Let 𝑧 a vertex: the largest shortest path from 𝑧 has length equal the 

radius of  𝐺 → 𝑒(𝑧) = 𝑟𝑎𝑑𝑖𝑢𝑠(𝐺)

 From the Triangle Inequality it holds that:

𝒅𝒊𝒂𝒎𝒆𝒕𝒆𝒓 𝑮 = 𝒅𝒊𝒔𝒕 𝒙, 𝒚 ≤ 𝒅𝒊𝒔𝒕 𝒙, 𝒛 + 𝒅𝒊𝒔𝒕 𝒛, 𝒚 ≤ 𝒆 𝒛 + 𝒆 𝒛 = 𝟐 ⋅ 𝒓𝒂𝒅𝒊𝒖𝒔(𝑮)
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• The subgraph of  a graph 𝐺 induced by the vertices of  𝐺 with the minimum   

eccentricity is called Center of  graph G (denoted as center(𝐺)).
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• The subgraph of  a graph 𝐺 induced by the vertices of  𝐺 with the minimum   

eccentricity is called Center of  graph G (denoted as center(𝐺)).
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• The subgraph of  a graph 𝐺 induced by the vertices of  𝐺 with the minimum   

eccentricity is called Center of  graph G (denoted as center(𝐺)).
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• Theorem: Each graph 𝐺 is the center of  a connected graph 𝐻.
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• Theorem: Each graph 𝐺 is the center of  a connected graph 𝐻.
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• Theorem: Each graph 𝐺 is the center of  a connected graph 𝐻.

1. Construct the hyper-graph 𝐻 …

2. Vertices 𝑣1, 𝑣2 are connected to all the vertices of  𝐻
while 𝑢1, 𝑢2 are connected to 𝑣1, 𝑣2. 

3. In hyper-graph 𝐻 it holds that 𝑒 𝑣 = 2 ∀ 𝑣 ∈ 𝐸(𝐺),
while it holds that 𝑒(𝑣1) = 𝑒(𝑣2) = 3 and 𝑒(𝑢1) = 𝑒(𝑢2) = 4,

hence the graph 𝐺 consists the center of  graph 𝐻.
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• Theorem: Each graph 𝐺 is the center of  a connected graph 𝐻.

1. Construct the hyper-graph 𝐻 …

2. Vertices 𝑣1, 𝑣2 are connected to all the vertices of  𝐻
while 𝑢1, 𝑢2 are connected to 𝑣1, 𝑣2. 

3. In hyper-graph 𝐻 it holds that 𝑒 𝑣 = 2 ∀ 𝑣 ∈ 𝐸(𝐺),
while it holds that 𝑒(𝑣1) = 𝑒(𝑣2) = 3 and 𝑒(𝑢1) = 𝑒(𝑢2) = 4,

hence the graph 𝐺 consists the center of  graph 𝐻.
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• Theorem: Each graph 𝐺 is the center of  a connected graph 𝐻.

1. Construct the hyper-graph 𝐻 …

2. Vertices 𝑣1, 𝑣2 are connected to all the vertices of  𝐻
while 𝑢1, 𝑢2 are connected to 𝑣1, 𝑣2. 

3. In hyper-graph 𝐻 it holds that 𝑒 𝑣 = 2 ∀ 𝑣 ∈ 𝐸(𝐺),
while it holds that 𝑒(𝑣1) = 𝑒(𝑣2) = 3 and 𝑒(𝑢1) = 𝑒(𝑢2) = 4,

hence the graph 𝐺 consists the center of  graph 𝐻.
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• Vertex Distance is defined as the sum of  the distances between a specific 

vertex and all the vertices of  the graph.

𝑑𝑖𝑠𝑡 𝑣 =  

𝑢∈𝑉(𝐺)

𝑑𝑖𝑠𝑡(𝑣, 𝑢)
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• Vertex Distance is defined as the sum of  the distances between a specific 

vertex and all the vertices of  the graph.

𝑑𝑖𝑠𝑡 𝑣 =  

𝑢∈𝑉(𝐺)

𝑑𝑖𝑠𝑡(𝑣, 𝑢)
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• Vertex Distance is defined as the sum of  the distances between a specific 

vertex and all the vertices of  the graph.

𝑑𝑖𝑠𝑡 𝑣 =  

𝑢∈𝑉(𝐺)

𝑑𝑖𝑠𝑡(𝑣, 𝑢)
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• Vertex Distance is defined as the sum of  the distances between a specific 

vertex and all the vertices of  the graph.

𝑑𝑖𝑠𝑡 𝑣 =  

𝑢∈𝑉(𝐺)

𝑑𝑖𝑠𝑡(𝑣, 𝑢)
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• Vertex Distance is defined as the sum of  the distances between a specific 

vertex and all the vertices of  the graph.

𝑑𝑖𝑠𝑡 𝑣 =  

𝑢∈𝑉(𝐺)

𝑑𝑖𝑠𝑡(𝑣, 𝑢)
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• Vertex Distance is defined as the sum of  the distances between a specific 

vertex and all the vertices of  the graph.

𝑑𝑖𝑠𝑡 𝑣 =  

𝑢∈𝑉(𝐺)

𝑑𝑖𝑠𝑡(𝑣, 𝑢)
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• Vertex Distance is defined as the sum of  the distances between a specific 

vertex and all the vertices of  the graph.

𝑑𝑖𝑠𝑡 𝑣 =  

𝑢∈𝑉(𝐺)

𝑑𝑖𝑠𝑡(𝑣, 𝑢)
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Algorithm Center Computation

Input: Matrix D (Floyd) with the Distances of  the vertices of  a graph 𝐺

Output: The Center of  the graph 𝐺.

1. For i=1:1:n

2. dist(i)← 𝟎
3. For j=1:1:n

4. if  (i ≠ j AND D(i,j) >dist(i))

5. dist(i) ← D(i,j)

6. Center ← 1

7. For i=1:1:n

8. if(dist(i)<dist(Center))

9. Center ← 𝒊
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• The subgraph of  a graph 𝐺 induced by the vertices of  𝐺 with the minimum   

distance is called Median of  graph 𝐺 (denoted as median(𝐺)).
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Algorithm Median Computation

Input: Matrix D (Floyd) with the Distances of  the vertices of  a graph 𝐺

Output: The Median of  the graph 𝐺.

1. For i=1:1:n

2. sum(i)← 𝟎
3. For j=1:1:n

4. if  (i ≠ j)

5. sum(i) ← sum(i) + D(i,j)

6. M𝐞𝐝𝐢𝐚𝐧 ← 1

7. For i=1:1:n

8. if(sum(i)<sum(Median))

9. Median ← 𝒊
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• The Median and the Center of  a graph 𝐺 are not always the same.
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• The Median and the Center of  a graph 𝐺 are not always the same.
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• The Median and the Center of  a graph 𝐺 are not always the same.
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• The Median and the Center of  a graph 𝐺 are not always the same.

Center 

Median 
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• The Diameter of a graph is defined to be the longest shortest path

exhibited across all possible pairs of vertices.

Algorithm Diameter Computation

Input: A graph 𝐺 = (𝑉, 𝐸) with vertices 1,2, … , 𝑛

Output: The value of  the Diameter of  the Graph.

1. Set MaxLength ← 𝟎
2. For i=1:1:n

3. dist(i) ← ∞ and flag(i) ← false

4. For i=1:1:n

5. temp ← 0 , dist(i) ← ∞ and flag(i) ← true

6. Enqueue(Q,i)

7. while Q ≠ isnull();

8. u ← Dequeue(Q)

9. ∀ 𝒖, 𝒗 ∈ 𝑬 𝑮
10. if  flag(v)=false 

11. flag(v) ← true and dist(v) ← dist(u)+1

12. if  dist(v) > temp

13. temp ← dist(v)

14. Enqueue(Q,v)

15. if  MaxLenth < temp

16. MaxLength ← temp
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• In applications of Graph Theory, the term Centrality identify the most

important vertices within a graph.

• Centrality indices are answers to the question "What characterizes an

important vertex?“, while the word "importance" has a wide number of

meanings, leading to many different definitions of centrality.

• Regarding the criteria deployed to measure centrality, it can be categorized to

the following types:

1. Degree Centrality

2. Closeness Centrality

3. Betweeness Centrality
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• The term of Degree Centrality is defined as the number of links incident

upon a node (i.e., the number of ties that a node has).

• The degree can be interpreted in terms of the immediate risk of a node for

catching whatever is flowing through the network (such as a virus, or some

information).
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• The term of Degree Centrality is defined as the number of links incident

upon a node (i.e., the number of ties that a node has).

• The degree can be interpreted in terms of the immediate risk of a node for

catching whatever is flowing through the network (such as a virus, or some

information).

• The Degree Centrality of a vertex 𝑣, for a given graph 𝐺 = (𝑉, 𝐸) with

|𝑉| vertices and |𝐸| edges, is defined as:

𝐶𝐷(𝑣) = deg(𝑣)
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• In a connected graph, the normalized Closeness Centrality of a

node is the average length of the shortest path between the node and all

other nodes in the graph.

• The more central a node is, the closer it is to all other nodes.
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• In a connected graph, the normalized Closeness Centrality of a

node is the average length of the shortest path between the node and all

other nodes in the graph.

• The more central a node is, the closer it is to all other nodes.

• Closeness Centrality is computed as:

𝐶 𝑥 =
1

 𝑦 𝑑 𝑦, 𝑥

where d(y,x) is the distance between vertices x and y.

• In order to adjust the formula to compare graphs of different sizes, the

normalized form is computed, given by the previous formula multiplied by

N-1, where N is the number of nodes in the graph.
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• In a connected graph, the normalized Closeness Centrality of a

node is the average length of the shortest path between the node and all

other nodes in the graph.

• The more central a node is, the closer it is to all other nodes.

• Closeness Centrality is computed as:

𝐶 𝑥 =
1

 𝑦 𝑑 𝑦, 𝑥

where d(y,x) is the distance between vertices x and y.

• Taking distances from or to all other nodes is irrelevant in undirected

graphs, whereas it can produce totally different results in directed graphs.
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• The term Betweenness Centrality quantifies the number of times a node

acts as a bridge along the shortest path between two other nodes.
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• The term Betweenness Centrality quantifies the number of times a node

acts as a bridge along the shortest path between two other nodes.

• Under this concept, vertices that have a high probability to occur on a

randomly chosen shortest path between two randomly chosen vertices have

a high betweenness.
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• The term Betweenness Centrality quantifies the number of times a node

acts as a bridge along the shortest path between two other nodes.

• Under this concept, vertices that have a high probability to occur on a

randomly chosen shortest path between two randomly chosen vertices have

a high betweenness.

• The Betweenness Centrality of a vertex v in a graph G=(V,E) with V

vertices is computed as follows:

1. For each pair of vertices (s,t), compute the shortest paths between them.

2. For each pair of vertices (s,t), determine the fraction of shortest paths

that pass through the vertex in question (here, vertex v).

3. Sum this fraction over all pairs of vertices (s,t).
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• The term Betweenness Centrality quantifies the number of times a node

acts as a bridge along the shortest path between two other nodes.

• More compactly the betweenness can be represented as

𝐶𝐵 𝑣 =  

𝑠≠𝑣≠𝑡∈𝑉

𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡

• where 𝜎𝑠𝑡 is total number of shortest paths from node 𝑠 to node 𝑡 and

𝜎𝑠𝑡(𝑣) is the number of those paths that pass through 𝑣.

• The betweenness may be normalised by dividing through the number of

pairs of vertices not including 𝑣, which:

o for directed graphs is (𝑛 − 1)(𝑛 − 2)}(𝑛 − 1)(𝑛 − 2) and

o for undirected graphs is (𝑛 − 1)(𝑛 − 2)/2}(𝑛 − 1)(𝑛 − 2)/2.
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• The term Betweenness Centrality quantifies the number of times a node

acts as a bridge along the shortest path between two other nodes.

• More compactly the betweenness can be represented as

𝐶𝐵 𝑣 =  

𝑠≠𝑣≠𝑡∈𝑉

𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡

• where 𝜎𝑠𝑡 is total number of shortest paths from node 𝑠 to node 𝑡 and

𝜎𝑠𝑡(𝑣) is the number of those paths that pass through 𝑣.

• For example, in an undirected star graph, the center vertex (which is

contained in every possible shortest path) would have a betweenness of

(𝑛 − 1)(𝑛 − 2)/2}(𝑛 − 1)(𝑛 − 2)/2 (1, if normalised) while the leaves

(which are contained in no shortest paths) would have a betweenness of 0.
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• The Seven Bridges of Königsberg is a historically notable problem in

mathematics. Its negative resolution by Leonhard Euler in 1736 laid the

foundations of graph theory and prefigured the idea of topology.
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• The city of Königsberg in Prussia (now Kaliningrad, Russia) was set on

both sides of the Pregel River, and included two large islands - Kneiphof

and Lomse - which were connected to each other, or to the two mainland

portions of the city, by seven bridges.

• The problem was to devise a walk through the city that would cross 

each of  those bridges once and only once.
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• By way of specifying the logical task unambiguously, explicitly unacceptable

solutions involved either:

a) reaching an island/mainland bank other than via one of the bridges, or

b) accessing any bridge without crossing to its other end are.
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• Euler proved that the problem has no solution. The difficulty he faced was

the development of a suitable technique of analysis, and of subsequent tests

that established this assertion with mathematical rigor.
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• First, Euler pointed out that the choice of route inside each land mass is

irrelevant.

• The only important feature of a route is the sequence of bridges crossed.

• This allowed him to reformulate the problem in abstract terms (laying the

foundations of graph theory), eliminating all features except the list of land

masses and the bridges connecting them.
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• First, Euler pointed out that the choice of route inside each land mass is

irrelevant.

• The only important feature of a route is the sequence of bridges crossed.

• This allowed him to reformulate the problem in abstract terms (laying the

foundations of graph theory), eliminating all features except the list of land

masses and the bridges connecting them.

He replaced …

each land mass with an abstract "vertex" or node, and

each bridge with an abstract connection, an "edge", which

only serves to record which pair of vertices is connected by that bridge.
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• First, Euler pointed out that the choice of route inside each land mass is

irrelevant.

• The only important feature of a route is the sequence of bridges crossed.

• This allowed him to reformulate the problem in abstract terms (laying the

foundations of graph theory), eliminating all features except the list of land

masses and the bridges connecting them.
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• Next, Euler observed that (except at the endpoints of the walk), whenever

one enters a vertex by a bridge, one leaves the vertex by a bridge.

o During any walk in the graph, the number of times one enters a non-

terminal vertex equals the number of times one leaves it.

o If every bridge has been traversed exactly once, it follows that, for each

land mass (except start/finish), the number of bridges touching that land

mass must be even (half "toward" and half "away" from the landmass).

o All four of the land masses in the original problem are touched by an odd

number of bridges (one is touched by 5 bridges, and each of the other

three is touched by 3).

o Since, at most, two land masses can serve as the endpoints of a walk, the

proposition of a walk traversing each bridge once leads to a contradiction.
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• Is it possible in a graph to find a closed trace (circuit) crossing all the edges

of the graph, exactly one time?

• Theorem - Eulerian Graph: Include closed trace (circuit)

o A graph G is Eulerian iff it includes exactly 0 vertices of odd degree.

• Theorem - Semi-Eulerian Graphs: Include open trace (path)

o A graph G is Semi-Eulerian iff it include exactly 2 vertices of odd degree.

 How can it be effectively checked if  a graph is Eulerian?
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• Is it possible in a graph to find a closed trace (circuit) crossing all the edges

of the graph, exactly one time?

• Theorem - Eulerian Graph: Include closed trace (circuit)

o A graph G is Eulerian iff it includes exactly 0 vertices of odd degree.

• Theorem - Semi-Eulerian Graphs: Include open trace (path)

o A graph G is Semi-Eulerian iff it include exactly 2 vertices of odd degree.

 How can it be effectively checked if  a graph is Eulerian?

 Deploying DFS and the Theorem

 In linear time 𝑂(𝑛 +𝑚)
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• Is it possible in a graph to find a closed trace (circuit) crossing all the edges

of the graph, exactly one time?

• Theorem - Eulerian Graph: Include closed trace (circuit)

o A graph G is Eulerian iff it includes exactly 0 vertices of odd degree.

• Theorem - Semi-Eulerian Graphs: Include open trace (path)

o A graph G is Semi-Eulerian iff it include exactly 2 vertices of odd degree.

 Theorem: A simple connected graph G=(V,E) is Eulerian iff each of  its 

edges belongs to an odd number of  cycles.
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• Theorem: A simple connected graph 𝐺 is Eulerian (resp., Semi-Eulerian)

iff it includes exactly 0 (resp., exactly 2) vertices of odd degree.

Proof.

Necessity of Condition:

If there exists Eulerian Circuit (resp., open trace), then 𝐺 should be

connected and the number of odd-degree vertices should be 0 (resp., 2).

Sufficiency of Condition: (Inductively on the number of edges)

a) If |𝐸| = 2, the truth is obvious. Let the proposition is truth for

|𝐸| > 2. Let us assume that graph 𝐺contains two vertices of odd

degree (let, 𝑣1, 𝑣2). Let as assume a walk from vertex 𝑣𝑖 (𝑣1 if

there exist odd-degree vertices). Let the walk 𝑊 cross various vertices

until it reaches vertex 𝑣𝑗, without omitting the corresponding edges.

If the graph 𝐺 does not contain odd-degree edges, then 𝑣𝑗=𝑣𝑖 ,

else 𝑣𝑗 = 𝑣2.
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• Theorem: A simple connected graph 𝐺 is Eulerian (resp., Semi-Eulerian)

iff it includes exactly 0 (resp., exactly 2) vertices of odd degree.

Proof.

Necessity of Condition:

If there exists Eulerian Circuit (resp., open trace), then 𝐺 should be

connected and the number of odd-degree vertices should be 0 (resp., 2).

Sufficiency of Condition: (Inductively on the number of edges)

b) However, it is not obvious if the walk 𝑊 has crossed through all the

vertices. If so, there exist edges that have not been utilized.

1. If we remove the rest of the utilized edge, then a subgraph 𝐺’

results, that is not necessarily connected.

2. The graph 𝐺’ should contain only even-degree vertices.
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• Theorem: A simple connected graph 𝐺 is Eulerian (resp., Semi-Eulerian)

iff it includes exactly 0 (resp., exactly 2) vertices of odd degree.

Proof.

Necessity of Condition:

If there exists Eulerian Circuit (resp., open trace), then 𝐺 should be

connected and the number of odd-degree vertices should be 0 (resp., 2).

Sufficiency of Condition: (Inductively on the number of edges)

b) However, it is not obvious if the walk 𝑊 has crossed through all the

vertices. If so, there exist edges that have not been utilized.

3. According to the assumption of the induction, each component of

𝐺’ contains an Eulerian circuit. Since graph 𝐺 is connected, then

the walk should pass from at least one vertex of each component

of 𝐺’.
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• Theorem: A simple connected graph 𝐺 is Eulerian (resp., Semi-Eulerian)

iff it includes exactly 0 (resp., exactly 2) vertices of odd degree.

Proof.

Necessity of Condition:

If there exists Eulerian Circuit (resp., open trace), then 𝐺 should be

connected and the number of odd-degree vertices should be 0 (resp., 2).

Sufficiency of Condition: (Inductively on the number of edges)

b) However, it is not obvious if the walk 𝑊 has crossed through all the

vertices. If so, there exist edges that have not been utilized.

4. It can be constructed an Eulerian circuit (or open trace) for the

graph 𝐺 by introducing the Eulerian circuits of the components of

the subgraph 𝐺’ to the walk 𝑊.
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• Theorem : A simple connected graph 𝐺 is Eulerian (resp., Semi-Eulerian)

iff it includes exactly 0 (resp., exactly 2) vertices of odd degree.

Proof.of the Sufficiency of Condition: (Inductively on the number of edges)
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• Let us assume that we follow a naive approach of discovering an Eulerian

circuit in a given graph,

o starting from an arbitrary vertex and

o proceeding over the edges that have not been examined yet.

• … such an approach does not guarantee that it can discover the circuit!

• A graph is called arbitrarily traceable from vertex v, if it is guaranteed

that we can draw a closed trace based on the previous naive approach

starting from vertex v.
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• Algorithms to discover Eulerian circuits in graphs.

o Hierholtzer (1873): Concatenation of  circuits

o Fleury (1883): Gradual extension of  tract 𝑇𝑖 , avoiding bridges in the 

subgraph 𝐺 − 𝐸(𝑇𝑖) unless there is no other option.

o Tucker (1976): Vertex split as to form individual cycles and 

concatenation of  cycles. 
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• Hierholtzer

Input: A connected graph 𝐺 = (𝑉, 𝐸) with vertices of  even degree 

Output: An Eulerian circuit of  graph G.

1. Select a vertex 𝒗 ∈ 𝑽 creating circuit 𝑪𝟎 selecting edges ∉ 𝑪𝟎

2. Set 𝒊 ← 𝟎
3. If  𝑬(𝑪𝒊) = 𝑬(𝑮)

𝑪 = 𝑪𝒊 is an Eulerian Circuit

4. Else

5. Select a vertex 𝒗𝒊 of  𝑪𝒊 adjacent to an edge in 𝑪𝒊 and

proceed by constructing another circuit 𝑪’𝒊 starting wit vertex 𝒗𝒊

inside the subgraph 𝑮 − 𝑬(𝑪𝒊)
6. From the circuits 𝑪𝒊 and 𝑪’𝒊 , construct a hyper-circuit 𝑪𝒊+𝟏 starting from vertex 

𝒗𝒊−𝟏 crossing circuit 𝑪𝒊 and continuing to circuit 𝑪’𝒊 frinishing to vertex 𝒗𝒊

7. 𝒊 ← 𝒊 + 𝟏
8. Goto step 3.
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• Hierholtzer

1

2 3

6 5

4
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• Hierholtzer

• 𝐶1: 1 → 2 → 6 → 1

1

2 3

6 5

4

𝑪𝟏
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• Hierholtzer

• 𝐶1: 1 → 2 → 6 → 1

• 𝐶2: 2 → 3 → 6 → 5 → 2

1

2 3

6 5

4

𝑪𝟏

𝑪𝟐
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• Hierholtzer

• 𝐶1: 1 → 2 → 6 → 1

• 𝐶2: 2 → 3 → 6 → 5 → 2

• 𝐶3: 3 → 5 → 4 → 3

1

2 3

6 5

4

𝑪𝟏

𝑪𝟐

𝑪𝟑
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• Hierholtzer

• 𝐶1: 1 → 2 → 6 → 1

• 𝐶2: 2 → 3 → 6 → 5 → 2

• 𝐶3: 3 → 5 → 4 → 3

1

2 3

6 5

4

𝑪𝟏

𝑪𝟐

𝑪𝟑
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• Hierholtzer

• 𝐶1: 1 → 2 → 6 → 1

• 𝐶2: 2 → 3 → 6 → 5 → 2

• 𝐶3: 3 → 5 → 4 → 3

1

2 3

6 5

4

𝑪𝟏

𝑪𝟐

𝑪𝟑

Select a vertex in v ∈ 𝐶𝑖
that is adjacent to edge ∉ 𝐶𝑖
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• Hierholtzer

• 𝐶1: 1 → 2 → 6 → 1

• 𝐶2: 2 → 3 → 6 → 5 → 2

• 𝐶3: 3 → 5 → 4 → 3

1

2 3

6 5

4

𝑪𝟏

𝑪𝟐

𝑪𝟑

Select a vertex in v ∈ 𝐶𝑖
that is adjacent to edge ∉ 𝐶𝑖

Merge consecutively 𝐶’ = 𝐶1 + 𝐶2=

=1 → 2 → 3 → 6 → 5 → 2 → 6 →1
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• Hierholtzer

• 𝐶1: 1 → 2 → 6 → 1

• 𝐶2: 2 → 3 → 6 → 5 → 2

• 𝐶3: 3 → 5 → 4 → 3

1

2 3

6 5

4

𝑪𝟏

𝑪𝟐

𝑪𝟑

Select a vertex in v ∈ 𝐶𝑖
that is adjacent to edge ∉ 𝐶𝑖

Merge consecutively 𝐶’ = 𝐶1 + 𝐶2=

=1 → 2 → 3 → 6 → 5 → 2 → 6 →1
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• Hierholtzer

• 𝐶1: 1 → 2 → 6 → 1

• 𝐶2: 2 → 3 → 6 → 5 → 2

• 𝐶3: 3 → 5 → 4 → 3

1

2 3

6 5

4

𝑪𝟏

𝑪𝟐

𝑪𝟑

Select a vertex in v ∈ 𝐶𝑖
that is adjacent to edge ∉ 𝐶𝑖

Merge consecutively 𝐶’ += 𝐶3=

=1→2→3→5→4→3 →6→5→2→6→1
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• Hierholtzer

• 𝐶1: 1 → 2 → 6 → 1

• 𝐶2: 2 → 3 → 6 → 5 → 2

• 𝐶3: 3 → 5 → 4 → 3

1

2 3

6 5

4

𝑪𝟏

𝑪𝟐

𝑪𝟑

Select a vertex in v ∈ 𝐶𝑖
that is adjacent to edge ∉ 𝐶𝑖

Merge consecutively 𝐶’ += 𝐶3=

=1→2→3→5→4→3 →6→5→2→6→1
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• Fleury

Input: A connected graph 𝐺 = (𝑉, 𝐸) with vertices of  even degree 

Output: An Eulerian circuit of  graph G.

1. Select a vertex 𝒗𝟎 ∈ 𝑽 as first vertex of  the trace

2. Set 𝐓𝟎 ← 𝑽𝟎 and 𝒊 ← 𝟎
3. Let the trace 𝐓𝒊 = 𝒗𝟎, 𝒆𝟏, 𝒗𝟏, … , 𝒆𝒊, 𝒗𝒊

4. From vertex  𝒗𝒊 Select arbitrarily an edge 𝒆𝒊+𝟏 ∉ 𝑻𝒊 that is not a bridge in the 

subgraph 𝑮 − 𝑬(𝑻_𝒊), unless there is no other option.

5. Define path 𝑻𝒊+𝟏 = (𝑻𝒊, 𝒆𝒊+𝟏, 𝒗𝒊+𝟏)
6. 𝒊 ← 𝒊 + 𝟏
7. If  (𝒊 = |𝑬|)

𝑪 = 𝑻𝒊 is an Eulerian circuit

8. Else

Goto step 3.



PATHS AND CYCLES …

 Discovering Eulerian Circuits in Graphs

99

• Tucker

Input: A connected graph 𝐺 = (𝑉, 𝐸) with vertices of  even degree 

Output: An Eulerian circuit of  graph G.

1. Split the vertices until there exist only vertices of  degree “2”

2. Let 𝑮𝟏 the produced graph

3. 𝒊 ← 𝟏
4. Let 𝒄𝟏 the even number of  components of  graph 𝑮𝟏

5. If  𝒄𝒊 = 𝟏
𝑪 = 𝑮𝒊 is Eulerian circuit

6. Else 

Search two components 𝑻 and 𝑻’ of  𝑮_𝒊 having  𝒗𝒊 as common vertex

7. Construct circuit 𝑪𝒊+𝟏 starting from vertex 𝒗𝒊, crossing 𝑻 and 𝑻’ finishing to 𝒗𝒊

8. Define graph 𝑮𝒊+𝟏 = 𝑮𝒊 − 𝑻, 𝑻’ ∪ 𝑪𝒊+𝟏

9. 𝑪_(𝒊 + 𝟏) is a component of  the subgraph 𝑮𝒊+𝟏

10. 𝑻 = 𝑪𝒊+𝟏

11. 𝒊 ← 𝒊 + 𝟏
12. Let 𝒄𝒊 is the number of  components of  subgraph 𝑮𝒊

13. Goto step 5
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• Tucker

Concept: Split the vertices until there 
exist only vertices of  degree “2”
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• Tucker

Concept: Split the vertices until there 
exist only vertices of  degree “2”

1 → 2 → 5 → 1 
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• Tucker

Concept: Split the vertices until there 
exist only vertices of  degree “2”

1 → 2 → 5 → 1 
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• Tucker

Concept: Split the vertices until there 
exist only vertices of  degree “2”

5 → 4 → 6 → 5 

1 → 2 → 5 → 1 
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• Tucker

Concept: Split the vertices until there 
exist only vertices of  degree “2”

5 → 4 → 6 → 5 

1 → 2 → 5 → 1 
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• Tucker

Concept: Split the vertices until there 
exist only vertices of  degree “2”

5 → 4 → 6 → 5 

1 → 2 → 5 → 1 

2 → 3 → 4 → 2 
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• Tucker

Concept: Split the vertices until there 
exist only vertices of  degree “2”

1 → 2 → 5 → 1 

5 → 4 → 6 → 5 

2 → 3 → 4 → 2 
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• Tucker

Concept: Split the vertices until there 
exist only vertices of  degree “2”

1 → 2 → 5 → 1 

5 → 4 → 6 → 5 

2 → 3 → 4 → 2 

1 → 2 → 3 → 4 → 2 → 5 → 4 → 6 → 5 
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• The “CPP” Problem:

A postman starting from his office has to cross all the streets and 

return to his office as soon as possible!
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• The “CPP” Problem:

A postman starting from his office has to cross all the streets and 

return to his office as soon as possible!

Mei-Ko Kwan, 

1962
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• The “CPP” Problem:

A postman starting from his office has to cross all the streets and 

return to his office as soon as possible!

• find a shortest closed path or circuit that visits every edge

of an (connected) undirected graph.

• When the graph has an Eulerian circuit that is an optimal solution.

• Otherwise, the optimization problem is to find the smallest number of

graph edges to duplicate (or the subset of edges with the minimum

possible total weight) so that the resulting multigraph does have an

Eulerian circuit.

• It may be solved in polynomial time.
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• The “CPP” Problem:

A postman starting from his office has to cross all the streets and 

return to his office as soon as possible!

• If the graph 𝐺 is not Eulerian, then some edges have to be crossed more

than one times … how many?
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• The “CPP” Problem:

A postman starting from his office has to cross all the streets and 

return to his office as soon as possible!

• If the graph 𝐺 is not Eulerian, then some edges have to be crossed more

than one times … how many?

o If graph 𝐺 is a tree → … times
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• The “CPP” Problem:

A postman starting from his office has to cross all the streets and 

return to his office as soon as possible!

• If the graph 𝐺 is not Eulerian, then some edges have to be crossed more

than one times … how many?

o If graph 𝐺 is a tree → two times

The length 𝑙 of the optimal solution is 𝐸 ≤ 𝑙 ≤ 2|𝐸|



PATHS AND CYCLES …

 Chinese Postman Problem…

137

• The “CPP” Problem:

A postman starting from his office has to cross all the streets and 

return to his office as soon as possible!

• If the graph 𝐺 is not Eulerian, then some edges have to be crossed more

than one times … how many?

o If graph 𝐺 is a tree → two times

The length 𝑙 of the optimal solution is 𝐸 ≤ 𝑙 ≤ 2|𝐸|

o Otherwise ???



PATHS AND CYCLES …

 Chinese Postman Problem…

138

• The “CPP” Problem:

A postman starting from his office has to cross all the streets and 

return to his office as soon as possible!

• If the graph 𝐺 is not Eulerian, then some edges have to be crossed more

than one times … how many?

o Solution in case the graph 𝐺 is not a tree …
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• The “CPP” Problem:

A postman starting from his office has to cross all the streets and 

return to his office as soon as possible!

• If the graph 𝐺 is not Eulerian, then some edges have to be crossed more

than one times … how many?

o Solution in case the graph 𝐺 is not a tree …

We select the vertices of odd-degree and connect them with

“virtual edges” (if necessary), of weight equal to the weight (length) of

the shortest path between them.
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• The “CPP” Problem:

A postman starting from his office has to cross all the streets and 

return to his office as soon as possible!

• If the graph 𝐺 is not Eulerian, then some edges have to be crossed more

than one times … how many?

o Solution in case the graph 𝐺 is not a tree …

We apply an algorithm for the computation of Eulerian circuit, and

replace each “virtual-edge”, let 𝑥𝑦, with a real shortest path from

vertex 𝑥 to vertex 𝑦.
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• The “CPP” Problem:

A postman starting from his office has to cross all the streets and 

return to his office as soon as possible!

• If the graph 𝐺 is not Eulerian, then some edges have to be crossed more

than one times … how many?

o Solution in case the graph 𝐺 is not a tree …

We apply an algorithm for the computation of Eulerian circuit, and

replace each “virtual-edge”, let 𝑥𝑦, with a real shortest path from

vertex 𝑥 to vertex 𝑦.
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• The “CPP” Problem:

A postman starting from his office has to cross all the streets and 

return to his office as soon as possible!

• If the graph 𝐺 is not Eulerian, then some edges have to be crossed more

than one times … how many?

o Solution in case the graph 𝐺 is not a tree …

We apply an algorithm for the computation of Eulerian circuit, and

replace each “virtual-edge”, let 𝑥𝑦, with a real shortest path from

vertex 𝑥 to vertex 𝑦.
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• The “CPP” Problem:

A postman starting from his office has to cross all the streets and 

return to his office as soon as possible!

• If the graph 𝐺 is not Eulerian, then some edges have to be crossed more

than one times … how many?

o Solution in case the graph 𝐺 is not a tree …

We apply an algorithm for the computation of Eulerian circuit, and

replace each “virtual-edge”, let 𝑥𝑦, with a real shortest path from

vertex 𝑥 to vertex 𝑦.
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• The “CPP” Problem:

A postman starting from his office has to cross all the streets and 

return to his office as soon as possible!

• If the graph 𝐺 is not Eulerian, then some edges have to be crossed more

than one times … how many?

o Solution in case the graph 𝐺 is not a tree …

We apply an algorithm for the computation of Eulerian circuit, and

replace each “virtual-edge”, let 𝑥𝑦, with a real shortest path from

vertex 𝑥 to vertex 𝑦.

Optimal Matching 
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• The “CPP” Problem:

A postman starting from his office has to cross all the streets and 

return to his office as soon as possible!

• If the graph 𝐺 is not Eulerian, then some edges have to be crossed more

than one times … how many?

o Solution in case the graph 𝐺 is not a tree …

We apply an algorithm for the computation of Eulerian circuit, and

replace each “virtual-edge”, let 𝑥𝑦, with a real shortest path from

vertex 𝑥 to vertex 𝑦.

Optimal Matching 
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• The “CPP” Problem:

A postman starting from his office has to cross all the streets and 

return to his office as soon as possible!

• If the graph 𝐺 is not Eulerian, then some edges have to be crossed more

than one times … how many?

o Solution in case the graph 𝐺 is not a tree …

We apply an algorithm for the computation of Eulerian circuit, and

replace each “virtual-edge”, let 𝑥𝑦, with a real shortest path from

vertex 𝑥 to vertex 𝑦.
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• The “CPP” Problem:

A postman starting from his office has to cross all the streets and 

return to his office as soon as possible!

• If the graph 𝐺 is not Eulerian, then some edges have to be crossed more

than one times … how many?

o Solution in case the graph 𝐺 is not a tree …

We apply an algorithm for the computation of Eulerian circuit, and

replace each “virtual-edge”, let 𝑥𝑦, with a real shortest path from

vertex 𝑥 to vertex 𝑦.
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Hamilton (1806-1865)
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Sir William Rowan

Hamilton (1806-1865)

Given a 12-side geometrical shape (regular graph of degree 3, 20 vertices and 30 edges), each vertex

represents a city. Let the players “A” and “B”. Player “A” defines the 5 first cities and challenges

“B” to draw a path crossing only once each of the rest cities finishing, to the city given first by “A”.
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Given a 12-side geometrical shape (regular graph of degree 3, 20 vertices and 30 edges), each vertex

represents a city. Let the players “A” and “B”. Player “A” defines the 5 first cities and challenges

“B” to draw a path crossing only once each of the rest cities finishing, to the city given first by “A”.
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Sir William Rowan

Hamilton (1806-1865)

Given a 12-side geometrical shape (regular graph of degree 3, 20 vertices and 30 edges), each vertex

represents a city. Let the players “A” and “B”. Player “A” defines the 5 first cities and challenges

“B” to draw a path crossing only once each of the rest cities finishing, to the city given first by “A”.



PATHS AND CYCLES …

 Around the World …

155

Sir William Rowan

Hamilton (1806-1865)

?
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Is it possible in each graph to find a closed path (cycle)

that crosses all vertices only once?
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• Problem:

Is it possible in each graph to find a closed path (cycle)

that crosses all vertices only once?

• A Hamiltonian path (or traceable path) is a path in an undirected or

directed graph that visits each vertex exactly once.

• A Hamiltonian cycle (or Hamiltonian circuit) is a Hamiltonian path that

is a cycle.
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• Problem:

Is it possible in each graph to find a closed path (cycle)

that crosses all vertices only once?

• A Hamiltonian path (or traceable path) is a path in an undirected or

directed graph that visits each vertex exactly once.

• A Hamiltonian cycle (or Hamiltonian circuit) is a Hamiltonian path that

is a cycle.

• A Hamiltonian graph, is a graph that contains Hamiltonian cycle.
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• A graph 𝐺 is called traceable if it has Hamiltonian path.

• Every Hamiltonian graph is traceable, but the inverse does not hold.

• A graph 𝐺 is called homogeneously traceable if there exists a

Hamiltonian path starting from a random vertex.

• A graph 𝐺 is called hypo-Hamiltonian, if 𝐺 is not Hamiltonian but the

graph 𝐺 − 𝑣 is Hamiltonian.

• Every hypo-Hamiltonian graph is homogeneously traceable, but the

inverse does not hold.

• A graph 𝐺 is called Hamiltonian-connected if every two vertices are

connected by a Hamiltonian path.

• Every Hamiltonian-connected graph where 𝑛 ≥ 3 is Hamiltonian, but

the inverse does not hold.
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• Problem:

The necessary and sufficient condition for a graph to be Hamiltonian?

… NP-Complete

• Theorem 1: Every complete graph is Hamiltonian

… the graph 𝐾𝑛 is Hamiltonian ∀ 𝑛 ≥ 1

• Theorem 2: Each 𝐾𝑛 graph of odd cardinality of vertices has

(𝑛 − 1)/2 Hamiltonian cycles with different edges.
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• Problem:

The necessary and sufficient condition for a graph to be Hamiltonian?

… NP-Complete

• Theorem 1: Every complete graph is Hamiltonian

… the graph 𝐾𝑛 is Hamiltonian ∀ 𝑛 ≥ 1

• Theorem 2: Each 𝐾𝑛 graph of odd cardinality of vertices has

(𝑛 − 1)/2 Hamiltonian cycles with different edges.

o A complete graph has n(n-1)/2 edges.

o A Hamiltonian graph cycle has length n.

o The graph may has at most (n-1)/2 cycles of different edges.

o It has to be proven that is has exactly as many cycles …
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• Problem:

The necessary and sufficient condition for a graph to be Hamiltonian?

… NP-Complete

• Theorem 1: Every complete graph is Hamiltonian

… the graph 𝐾𝑛 is Hamiltonian ∀ 𝑛 ≥ 1

• Theorem 2: Each 𝐾𝑛 graph of odd cardinality of vertices has

(𝑛 − 1)/2 Hamiltonian cycles with different edges.

Proof:
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• Problem:

The necessary and sufficient condition for a graph to be Hamiltonian?

… NP-Complete

• Theorem 1: Every complete graph is Hamiltonian

… the graph 𝐾𝑛 is Hamiltonian ∀ 𝑛 ≥ 1

• Theorem 2: Each 𝐾𝑛 graph of odd cardinality of vertices has

(𝑛 − 1)/2 Hamiltonian cycles with different edges.

𝑣2

𝑣3

𝑣5
𝑣𝑛−2

𝑣𝑛

𝑣𝑛−1
𝑣𝑛−3

𝑣4

𝑣1

Proof:
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• Problem:

The necessary and sufficient condition for a graph to be Hamiltonian?

… NP-Complete

• Theorem 1: Every complete graph is Hamiltonian

… the graph 𝐾𝑛 is Hamiltonian ∀ 𝑛 ≥ 1

• Theorem 2: Each 𝐾𝑛 graph of odd cardinality of vertices has

(𝑛 − 1)/2 Hamiltonian cycles with different edges.

𝑣4

𝑣2

𝑣3
…

𝑣𝑛−2

𝑣𝑛
𝑣𝑛−1

…

𝑣1

Proof:

𝑣1
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• Problem:

The necessary and sufficient condition for a graph to be Hamiltonian?

… NP-Complete

• Theorem 1: Every complete graph is Hamiltonian

… the graph 𝐾𝑛 is Hamiltonian ∀ 𝑛 ≥ 1

• Theorem 2: Each 𝐾𝑛 graph of odd cardinality of vertices has

(𝑛 − 1)/2 Hamiltonian cycles with different edges.

𝑣4

𝑣2

𝑣3
…

𝑣𝑛−2

𝑣𝑛
𝑣𝑛−1

…

𝑣1

Proof:

𝑣1

{𝑣6…𝑣𝑛}
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• Theorem 3 (Dirac, 1952): If 𝐺 is a simple graph with 𝑛 ≥ 3 vertices

and it holds that 𝑑 𝐺 ≥ 𝑛/2, then the graph is Hamiltonian.

Proof:

o Let us assume that there exist 𝑘 new vertices connected to all the

vertices of 𝐺.

o Let that 𝑘 is as small as possible as the produced graph 𝐺’ to be

Hamiltonian.

o We will assume that 𝑘 ≥ 0 and we will result to contradiction.
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• Theorem 3 (Dirac, 1952): If 𝐺 is a simple graph with 𝑛 ≥ 3 vertices

and it holds that 𝑑 𝐺 ≥ 𝑛/2, then the graph is Hamiltonian.

Proof:

o Let us assume 𝐶 = (𝑣, 𝑝, 𝑤,⋯ , 𝑣) a Hamiltonian cycle of graph 𝐺’,

where 𝑣, 𝑤 are vertices of 𝐺, while vertex 𝑝 is one of the 𝑘 vertices.

o Vertices 𝑣, 𝑤 are not adjacent, otherwise vertex 𝑝 could be bypassed

negating the assumption that 𝑘 is as small as possible.

o A vertex 𝑤’ adjacent to 𝑤, can not appear after a vertex 𝑣’ that is

adjacent to 𝑣, because the sequence 𝑣 → 𝑝 → 𝑤 → ⋯ → 𝑣’ → 𝑤’ →

⋯ → 𝑣 could be substituted with the sequence 𝑣 → 𝑣’ → ⋯ → 𝑤 →

𝑤’ → ⋯ → 𝑣, inverting the part between 𝑤 and 𝑣’,
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• Theorem 3 (Dirac, 1952): If 𝐺 is a simple graph with 𝑛 ≥ 3 vertices

and it holds that 𝑑 𝐺 ≥ 𝑛/2, then the graph is Hamiltonian.

Proof:

o Hence, the vertices of 𝐺’ that are non adjacent to 𝑤 are at least as

many as the vertices adjacent to 𝑣 (i.e., at least 𝑛/2 + 𝑘).

o The of vertices of 𝐺’ that are adjacent to w are at least 𝑛/2 + 𝑘

o Since there does not exist a vertex in 𝐺’ that is both adjacent and non-

adjacent to 𝑤, it follows that the total number 𝑛 + 𝑘 of the vertices

of 𝐺’ is no less than 𝑛 + 2𝑘 …which is a contradiction.
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• Corollary: If the simple graph 𝐺 with 𝑛 ≥ 3 vertices and it holds

that 𝑑 𝐺 ≥ (𝑛 − 1)/2, then the graph has a Hamiltonian path .

Proof:

o Let the hyper graph 𝐻 = 𝐺 + 𝐾1, and let v a vertex of 𝐻 ∉ 𝑉(𝐺).

o Since the hyper graph 𝐻 is of order 𝑛 + 1, it holds that

𝑑 𝐻 = 𝑑 𝐺 ≥ (𝑛 − 1)/2 + 1 = (𝑛 + 1)/2.

o From Dirac’s Theorem, the graph 𝐻 has a Hamiltonian cycle.

o Then, omitting vertex 𝑣 it results to a Hamiltonian path.
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• Theorem 4 (Ore 1960): If the simple graph 𝐺 with 𝑛 ≥ 3 vertices and

for all its non-adjacent vertices 𝑥 and 𝑦 it holds that

𝑑 𝑥 + 𝑑(𝑦) ≥ 𝑛, then the graph 𝐺 is Hamiltonian.

Proof:

o Let us assume that the proposition of the Theorem is false.

o Then, there exist a non-Hamiltonian graph 𝐺 with n vertices and the

maximum number of edges, in order for our assumption to be

satisfied.

• If we add one extra edge (𝑥, 𝑦) on this graph between the vertices

x and y, then the graph 𝐻 = 𝐺 + (𝑥, 𝑦) will be Hamiltonian.

• Since 𝑛 ≥ 3 it follows that the graph 𝐺 is not complete.
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• Theorem 4 (Ore 1960): If the simple graph 𝐺 with 𝑛 ≥ 3 vertices and

for all its non-adjacent vertices 𝑥 and 𝑦 it holds that

𝑑 𝑥 + 𝑑(𝑦) ≥ 𝑛, then the graph 𝐺 is Hamiltonian.

Proof:

o Let us assume that the proposition of the Theorem is false.

o Let us assume that the graph 𝐻 is Hamiltonian an each Hamiltonian

cycle crosses edge (𝑥, 𝑦).

• In the graph 𝐺 there exist a Hamiltonian path

𝑃 = (𝑣1, 𝑣2, … , 𝑣𝑛), where 𝑣1 = 𝑥 and 𝑣𝑛 = 𝑦.

• If in this graph 𝐺, vertex x is adjacent to 𝑣𝑖, then it is not possible

vertex 𝑣𝑛 to be adjacent to vertex 𝑣𝑖−1 , because then graph

𝐺 there would exist a Hamiltonian cycle

(𝑥, 𝑣𝑖 , 𝑣𝑖+1, … , 𝑣𝑛, 𝑣𝑖−1, 𝑣𝑖−2, … , 𝑣1).
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• Theorem 4 (Ore 1960): If the simple graph 𝐺 with 𝑛 ≥ 3 vertices and

for all its non-adjacent vertices 𝑥 and 𝑦 it holds that

𝑑 𝑥 + 𝑑(𝑦) ≥ 𝑛, then the graph 𝐺 is Hamiltonian.

Proof:

o Let us assume that the proposition of the Theorem is false.

o Let us assume that the graph 𝐻 is Hamiltonian an each Hamiltonian

cycle crosses edge (𝑥, 𝑦).

• Then, for each vertex of 𝐺 that is adjacent to vertex 𝑥 there exist a

vertex in the graph 𝐺 − 𝑦 that is not adjacent to vertex 𝑦.

• Then, it holds: 𝑑 𝑦 ≤ (𝑛 − 1) − 𝑑(𝑥), that is a contradiction.
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• Theorem 5 (Bondy & Chvatal, 1976): Let 𝐺 be a simple graph, where

for two distinct non adjacent vertices 𝑥 and 𝑦 it holds that

𝑑 𝑥 + 𝑑 𝑦 ≥ 𝑛 . Then the graph 𝐺 is Hamiltonian iff the graph

𝐺 + (𝑥, 𝑦) is Hamiltonian.

Proof:



PATHS AND CYCLES …

 Hamiltonian Graphs

174

• Theorem 5 (Bondy & Chvatal, 1976): Let 𝐺 be a simple graph, where

for two distinct non adjacent vertices 𝑥 and 𝑦 it holds that

𝑑 𝑥 + 𝑑 𝑦 ≥ 𝑛. Then the graph G is Hamiltonian iff the graph

𝐺 + (𝑥, 𝑦) is Hamiltonian.

Proof:
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• Theorem 5 (Bondy & Chvatal, 1976): Let 𝐺 be a simple graph, where

for two distinct non adjacent vertices 𝑥 and 𝑦 it holds that

𝑑 𝑥 + 𝑑 𝑦 ≥ 𝑛. Then the graph G is Hamiltonian iff the graph

𝐺 + (𝑥, 𝑦) is Hamiltonian.

Proof:

o iff → if and only if
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• Theorem 5 (Bondy & Chvatal, 1976): Let 𝐺 be a simple graph, where

for two distinct non adjacent vertices 𝑥 and 𝑦 it holds that

𝑑 𝑥 + 𝑑 𝑦 ≥ 𝑛. Then the graph G is Hamiltonian iff the graph

𝐺 + (𝑥, 𝑦) is Hamiltonian.

Proof:

o iff → if and only if

o Ore’s Theorem utilizes the strong assumption that this relation holds

for every pair of non adjacent vertices.
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• Theorem 5 (Bondy & Chvatal, 1976): Let 𝐺 be a simple graph, where

for two distinct non adjacent vertices 𝑥 and 𝑦 it holds that

𝑑 𝑥 + 𝑑 𝑦 ≥ 𝑛. Then the graph G is Hamiltonian iff the graph

𝐺 + (𝑥, 𝑦) is Hamiltonian.

Proof:

o iff → if and only if

o Ore’s Theorem utilizes the strong assumption that this relation holds

for every pair of non adjacent vertices.

• The “if ” is obvious
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• Theorem 5 (Bondy & Chvatal, 1976): Let 𝐺 be a simple graph, where

for two distinct non adjacent vertices 𝑥 and 𝑦 it holds that

𝑑 𝑥 + 𝑑 𝑦 ≥ 𝑛. Then the graph G is Hamiltonian iff the graph

𝐺 + (𝑥, 𝑦) is Hamiltonian.

Proof:

o iff → if and only if

o Ore’s Theorem utilizes the strong assumption that this relation holds

for every pair of non adjacent vertices.

• The “if ” is obvious

• The “only if ” is proven following the same process as in Ore’s

Theorem.
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• Let a graph 𝐺 with 𝑛 = 5 vertices …

• Define Matrices 𝑀1 and 𝑀

• After sequential 𝑛 − 1 matrix multiplications and input concatenations

result a matrix 𝑀∗

• Check if the inputs of 𝑀∗ are Hamiltonian paths /cycles.
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• Let a graph 𝐺 with 𝑛 = 5 vertices …

• Define Matrices 𝑀1 and 𝑀 as follows:



PATHS AND CYCLES …

 Discovering Hamiltonian Cycles

181

B

E

A

C

D

• Let a graph 𝐺 with 𝑛 = 5 vertices …

• Define Matrices 𝑀1 and 𝑀 as follows:

0 AB 0 0 0

0 0 BC 0 0

0 0 0 CD CE

0 0 0 0 DE

EA EB 0 ED 0

0 B 0 0 0

0 0 C 0 0

0 0 0 D E

0 0 0 0 E

A B 0 D 0

𝐺

𝑀1 𝑀
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• Let a graph 𝐺 with 𝑛 = 5 vertices …

• Define Matrices 𝑀1 and 𝑀 as follows:

• Utilizing these matrices we proceed to sequential

matrix multiplications in order to construct matrices:

𝑀𝑗 = 𝑀𝑗−1 ∗ 𝑀, 1 < 𝑗 < 𝑛 , where, for each

element (𝑟, 𝑠) of 𝑀𝑗 it holds that:

𝑀𝑗 𝑟,𝑠 =  𝑡=1
𝑛 𝑀𝑗−1 𝑟, 𝑡 ∗ 𝑀(𝑡, 𝑠)

and the symbol “ * ” indicates the concatenation of the

corresponding elements of the two matrices 𝑀𝑗−1 and

𝑀, if both the elements are non-zero, while the symbol

of the element of 𝑀 is not included in the symbol of

element in 𝑀𝑗−1 (Hadamard Product).

0 AB 0 0 0

0 0 BC 0 0

0 0 0 CD CE

0 0 0 0 DE

EA EB 0 ED 0

0 B 0 0 0

0 0 C 0 0

0 0 0 D E

0 0 0 0 E

A B 0 D 0

B

E

A

C

D

𝐺

𝑀1

𝑀
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0 AB 0 0 0

0 0 BC 0 0

0 0 0 CD CE

0 0 0 0 DE

EA EB 0 ED 0

B

E

A

C

D

𝐺

𝑀1

0 B 0 0 0

0 0 C 0 0

0 0 0 D E

0 0 0 0 E

A B 0 D 0

𝑀

𝑀2 = 𝑀1 ∗ 𝑀

𝑀2(1,3)= 𝑡=1
5 𝑀1 1, 𝑡 ∗ 𝑀(𝑡, 3)

𝑀1(1, : ) →  0   AB  0  0  0

𝑀(: , 3) → 0    C    0  0  0

--------------------------------------

M_2 (1,3)   → 0 ABC  0  0  0

0 0 ABC 0 0

0 0 0 BCD BCE

CEA CEB 0 CED CDE

DEA DEB 0 0 0

0 EAB EBC 0 0

𝑀2



PATHS AND CYCLES …

 Discovering Hamiltonian Cycles

184

B

E

A

C

D

𝐺𝑀1

𝑀

𝑀2 𝑀3

𝑀4
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0 AB 0 0 0

0 0 BC 0 0

0 0 0 CD CE

0 0 0 0 DE

EA EB 0 ED 0

0 B 0 0 0

0 0 C 0 0

0 0 0 D E

0 0 0 0 E

A B 0 D 0

B

E

A

C

D

𝐺𝑀1

𝑀

0 0 ABC 0 0

0 0 0 BCD BCE

CEA CEB 0 CED CDE

DEA DEB 0 0 0

0 EAB EBC 0 0

𝑀2

0 0 0 ABCD ABCE

BCEA 0 0 BCED BCDE

CDEA CEAB 

CDEB

0 0 0

0 DEAB DEBC 0 0

0 0 EABC EBCD 0

𝑀3

0 0 0 ABCED ABCDE

BCDEA 0 0 0 0

0 CDEAB 0 0 0

0 0 DEABC 0 0

0 0 0 EABCD 0

𝑀4
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0 AB 0 0 0

0 0 BC 0 0

0 0 0 CD CE

0 0 0 0 DE

EA EB 0 ED 0

0 B 0 0 0

0 0 C 0 0

0 0 0 D E

0 0 0 0 E

A B 0 D 0

B

E

A

C

D

𝐺𝑀1

𝑀

0 0 ABC 0 0

0 0 0 BCD BCE

CEA CEB 0 CED CDE

DEA DEB 0 0 0

0 EAB EBC 0 0

𝑀2

0 0 0 ABCD ABCE

BCEA 0 0 BCED BCDE

CDEA CEAB 

CDEB

0 0 0

0 DEAB DEBC 0 0

0 0 EABC EBCD 0

𝑀3

0 0 0 ABCED ABCDE

BCDEA 0 0 0 0

0 CDEAB 0 0 0

0 0 DEABC 0 0

0 0 0 EABCD 0

𝑀4
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0 B 0 0 0

0 0 C 0 0

0 0 0 D E

0 0 0 0 E

A B 0 D 0

B

E

A

C

D

𝐺

𝑀

0 0 0 ABCED ABCDE

BCDEA 0 0 0 0

0 CDEAB 0 0 0

0 0 DEABC 0 0

0 0 0 EABCD 0

𝑀4
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0 B 0 0 0

0 0 C 0 0

0 0 0 D E

0 0 0 0 E

A B 0 D 0

B

E

A

C

D

𝐺

𝑀

0 0 0 ABCED ABCDE

BCDEA 0 0 0 0

0 CDEAB 0 0 0

0 0 DEABC 0 0

0 0 0 EABCD 0

𝑀4
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0 B 0 0 0

0 0 C 0 0

0 0 0 D E

0 0 0 0 E

A B 0 D 0

B

E

A

C

D

𝐺

𝑀

0 0 0 ABCED ABCDE

BCDEA 0 0 0 0

0 CDEAB 0 0 0

0 0 DEABC 0 0

0 0 0 EABCD 0

𝑀4
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0 B 0 0 0

0 0 C 0 0

0 0 0 D E

0 0 0 0 E

A B 0 D 0

B

E

A

C

D

𝐺

𝑀

0 0 0 ABCED ABCDE

BCDEA 0 0 0 0

0 CDEAB 0 0 0

0 0 DEABC 0 0

0 0 0 EABCD 0

𝑀4
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0 B 0 0 0

0 0 C 0 0

0 0 0 D E

0 0 0 0 E

A B 0 D 0

B

E

A

C

D

𝐺

𝑀

0 0 0 ABCED ABCDE

BCDEA 0 0 0 0

0 CDEAB 0 0 0

0 0 DEABC 0 0

0 0 0 EABCD 0

𝑀4
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• The “TSP” Problem:

Given a list of  cities and the distances between each pair of  cities, what is the 

shortest possible route a salesman should take in order to visit each city and 

return to the origin city? 
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• The “TSP” Problem:

Given a list of  cities and the distances between each pair of  cities, what is the 

shortest possible route a salesman should take in order to visit each city and 

return to the origin city? 

o Passing only once from each city …

o Passing more than once from each city …
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• The “TSP” Problem:

Given a list of  cities and the distances between each pair of  cities, what is the 

shortest possible route a salesman should take in order to visit each city and 

return to the origin city? 

o Passing only once from each city …

o Passing more than once from each city …

• If the graph 𝐺 is an Euclidean graph (i.e., it holds the triangle inequality

for every three vertices that form a triangle), it is not preferable for the

salesman to pass more than once from the cities already visited.

• The number of  Hamiltonian cycles in an Euclidean graph is (𝑛 − 1)!/2 .

Starting from an origin city, the salesman can move to 𝑛 − 1 cities, then 

to 𝑛 − 2 cities, to 𝑛 − 3,…, etc., while the destination counts twice.
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• The “TSP” Problem:

Given a list of  cities and the distances between each pair of  cities, what is the 

shortest possible route a salesman should take in order to visit each city and 

return to the origin city? 

o Passing only once from each city …

o Passing more than once from each city …

• Brute Force on (𝑛 − 1)!/2 Hamiltonian cycles → 𝑂(𝑛𝑛)

• Dynamic Programming (Branch and Bound) → 𝑂(𝑛2 2𝑛)

𝑻𝑺𝑷 ∈ 𝑵𝑷 − 𝑪𝒐𝒎𝒑𝒍𝒆𝒕𝒆
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• “TSP” Problem Definition:

Given a complete undirected graph 𝐺, with weighted edges 𝑤𝑖𝑗 ∈ 𝑁, ∀ 𝑖, 𝑗 ∈

𝐸(𝐺), find a Hamiltonian cycle 𝑊 in 𝐺, such that the sum of  the weights on 

the edges to be minimum? 

min  

i,j ∈W

𝑤𝑖𝑗
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• “TSP” Problem Definition:

Given a complete undirected graph 𝐺, with weighted edges 𝑤𝑖𝑗 ∈ 𝑁, ∀ 𝑖, 𝑗 ∈

𝐸 𝐺 and a number 𝑘 ∈ 𝑁, find if  there exists a Hamiltonian cycle 𝑊 in 𝐺, 

such that the sum of  the weights on the edges to be ≤ 𝑘 ? 

 

i,j ∈W

𝑤𝑖𝑗 ≤ 𝑘
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• “TSP” Problem Definition:

Given a complete undirected graph 𝐺, with weighted edges 𝑤𝑖𝑗 ∈ 𝑁, ∀ 𝑖, 𝑗 ∈

𝐸 𝐺 and a number 𝑘 ∈ 𝑁, find if  there exists a Hamiltonian cycle 𝑊 in 𝐺, 

such that the sum of  the weights on the edges to be ≤ 𝑘 ? 

𝑻𝑺𝑷 ∈ 𝑵𝑷 − 𝑪𝒐𝒎𝒑𝒍𝒆𝒕𝒆
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• Reduction:

The most important method (tool) to prove that a problem P belongs to a 

complexity class is the reduction? 

 Given a problem 𝐴 we transform the instance 𝑝1 of problem 𝐴 to the

instance 𝑝2 of problem 𝐵, such that a solution to 𝑝2 to provide a solution

to 𝑝1 (i.e., Α ≤ Β or Α→Β ).

𝑻𝑺𝑷 ∈ 𝑵𝑷 − 𝑪𝒐𝒎𝒑𝒍𝒆𝒕𝒆
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• Reduction:

The most important method (tool) to prove that a problem P belongs to a 

complexity class is the reduction? 

𝚨 ≤ 𝚩 or 𝚨→𝚩 (R reduction)

 If 𝑝1 is a “𝑌𝐸𝑆” instance of problem 𝐴, then the 𝑅 reduction will

produce a “𝑌𝐸𝑆” instance 𝑝2 (i.e., 𝑝2 = 𝑅(𝑝1)) of problem 𝐵.

 If 𝑝1 is a “𝑁𝑂” instance of problem 𝐴, then the 𝑅 reduction will

produce a “𝑁𝑂” instance 𝑝2 (i.e., 𝑝2 = 𝑅(𝑝1)) of problem 𝐵.

 Utilizing set-notation we should prove that the 𝑅 reduction is of

polynomial time and that 𝑝1 ∈ 𝐴 𝑖𝑓𝑓 𝑝2 ∈ 𝐵 (𝐴 and 𝐵 are sets of

instances having the property 𝑃, i.e., “𝑌𝐸𝑆” - satisfiability of 𝑃)

 Then we say that the problem A is reduced to B, or equivalently that we

can utilize the solution of B to solve A.
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• Reduction:

The most important method (tool) to prove that a problem P belongs to a 

complexity class is the reduction? 

𝚨 ≤ 𝚩 or 𝚨→𝚩 (R reduction)

 Lemma: If problem A is reduced to B in polynomial time, and problem

B can be solved in polynomial time, then problem A can be solved in

polynomial time.

𝑹
𝑹(𝒑𝟏) = 𝒑𝟐𝒑𝟏
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• Reduction:

The most important method (tool) to prove that a problem P belongs to a 

complexity class is the reduction? 

𝚨 ≤ 𝚩 or 𝚨→𝚩 (R reduction)

 Lemma: If problem A is reduced to B in polynomial time, and problem

B can be solved in polynomial time, then problem A can be solved in

polynomial time.

𝑩

𝒀𝑬𝑺
𝒑𝟐

𝑵𝑶
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• Reduction:

The most important method (tool) to prove that a problem P belongs to a 

complexity class is the reduction? 

𝚨 ≤ 𝚩 or 𝚨→𝚩 (R reduction)

 Lemma: If problem A is reduced to B in polynomial time, and problem

B can be solved in polynomial time, then problem A can be solved in

polynomial time.

𝑩

𝒀𝑬𝑺

𝑵𝑶

𝑹
𝑹(𝒑𝟏) = 𝒑𝟐𝒑𝟏

𝑨
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• Reduction:

The most important method (tool) to prove that a problem P belongs to a 

complexity class is the reduction? 

𝚨 ≤ 𝚩 or 𝚨→𝚩 (R reduction)

 Reversing the Lemma: If problem A is reduced to B in polynomial time,

and problem A can be solved in exponential time, then problem B

should be solved in exponential time.

 This form of reduction we will deploy in order to prove that many

problems of graph theory, like TSP in our case, are hard to be solved.
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• Theorem (TSP ∈ NP-Comlpete):

Given a complete undirected graph 𝐺 , with weighted edges 𝑤𝑖𝑗 ∈

𝑁, ∀ 𝑖, 𝑗 ∈ 𝐸 𝐺 and a number 𝑘 ∈ 𝑁, find if there exists a Hamiltonian

cycle 𝑊 in 𝐺, such that the sum of the weights on the edges to be ≤ 𝑘 ?

 

i,j ∈W

𝑤𝑖𝑗 ≤ 𝑘

1. The TSP problem belongs to NP class

2. There exists a known to be NP-Complete problem 𝐴 and 𝐴 ≤ 𝑇𝑆𝑃
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1. The TSP problem belongs to NP class

• We will construct a polynomial verifier

• The verifier (i.e., an algorithm for the problem) has as input a weighted

graph 𝐺 and an integer number 𝑘, while the certificate is a cycle 𝐶.

1. First, the cycle has to be checked if indeed is Hamiltonian

2. If not, then it returns “NO” and terminates

3. Else, it checks if the sum of the weights of 𝐶’s edges is ≤ 𝑘

1. If it is not truth, then it returns “NO” and terminates,

2. Else, it returns “YES”

• The steps followed in the verifier are implemented in polynomial time.
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1. The TSP problem belongs to NP class

• We will construct a polynomial verifier

• The verifier (i.e., an algorithm for the problem) has as input a weighted

graph 𝐺 and an integer number 𝑘, while the certificate is a cycle 𝐶.

1. First, the cycle has to be checked if indeed is Hamiltonian

2. If not, then it returns “NO” and terminates

3. Else, it checks if the sum of the weights of 𝐶’s edges is ≤ 𝑘

1. If it is not truth, then it returns “NO” and terminates,

2. Else, it returns “YES”
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1. The TSP problem belongs to NP class

• We will construct a polynomial verifier

• The verifier (i.e., an algorithm for the problem) has as input a weighted

graph 𝐺 and an integer number 𝑘, while the certificate is a cycle 𝐶.

1. First, the cycle has to be checked if indeed is Hamiltonian

2. If not, then it returns “NO” and terminates

3. Else, it checks if the sum of the weights of 𝐶’s edges is ≤ 𝑘

1. If it is not truth, then it returns “NO” and terminates,

2. Else, it returns “YES”



PATHS AND CYCLES …

 The Traveling Salesman Problem

211

1. The TSP problem belongs to NP class

• We will construct a polynomial verifier

• The verifier (i.e., an algorithm for the problem) has as input a weighted

graph 𝐺 and an integer number 𝑘, while the certificate is a cycle 𝐶.

1. First, the cycle has to be checked if indeed is Hamiltonian

2. If not, then it returns “NO” and terminates

3. Else, it checks if the sum of the weights of 𝐶’s edges is ≤ 𝑘

1. If it is not truth, then it returns “NO” and terminates,

2. Else, it returns “YES”
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1. The TSP problem belongs to NP class

• We will construct a polynomial verifier

• The verifier (i.e., an algorithm for the problem) has as input a weighted

graph 𝐺 and an integer number 𝑘, while the certificate is a cycle 𝐶.

1. First, the cycle has to be checked if indeed is Hamiltonian

2. If not, then it returns “NO” and terminates

3. Else, it checks if the sum of the weights of 𝐶’s edges is ≤ 𝑘

1. If it is not truth, then it returns “NO” and terminates,

2. Else, it returns “YES”
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1. The TSP problem belongs to NP class

• We will construct a polynomial verifier

• The verifier (i.e., an algorithm for the problem) has as input a weighted

graph 𝐺 and an integer number 𝑘, while the certificate is a cycle 𝐶.

1. First, the cycle has to be checked if indeed is Hamiltonian

2. If not, then it returns “NO” and terminates

3. Else, it checks if the sum of the weights of 𝑪’s edges is ≤ 𝒌

1. If it is not truth, then it returns “NO” and terminates,

2. Else, it returns “YES”
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1. The TSP problem belongs to NP class

• We will construct a polynomial verifier

• The verifier (i.e., an algorithm for the problem) has as input a weighted

graph 𝐺 and an integer number 𝑘, while the certificate is a cycle 𝐶.

1. First, the cycle has to be checked if indeed is Hamiltonian

2. If not, then it returns “NO” and terminates

3. Else, it checks if the sum of the weights of 𝑪’s edges is ≤ 𝒌

1. If it is not truth, then it returns “NO” and terminates,

2. Else, it returns “YES”
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2. There exists a known to be NP-Complete problem 𝐴 and 𝐴 ≤ 𝑇𝑆𝑃

• We select 𝐴 =Hamiltonian cycle (HAMC)

• Hamiltonian cycle in a simple connected graph 𝐺 is a closed path that

passes from each vertex of 𝐺.

• HAMC ∈ NP-Complete

• HAMC ≤ TSP
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2. There exists a known to be NP-complete problem 𝐴 and 𝐴 ≤ 𝑇𝑆𝑃

• Let 𝑝1 an instance of the HAMC by the graph 𝐺 = (𝑉, 𝐸)

• We construct a new complete weighted graph G’ = (𝑉’, 𝐸’): 𝑉’ = 𝑉 and

define a weight function 𝑤: 𝐸’ → {1,2} such that

∀(𝑖, 𝑗) ∈ 𝐸′, 𝑤𝑖𝑗 =  
1, 𝑖𝑓 𝑖, 𝑗 ∈ 𝐸

2, 𝑖𝑓 𝑖, 𝑗 ∉ 𝐸

• Finally we set 𝑘 = |𝑉|

• In order to complete the reduction we should prove that the graph 𝐺

has HAMC 𝑖𝑓𝑓 the produced graph 𝐺’ has HAMC ≤ 𝐾 = |𝑉|
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2. The graph 𝐺 has HAMC 𝑖𝑓𝑓 the produce graph 𝐺’ has HAMC ≤ 𝐾=|𝑉|

(⟹)

• Let 𝐺 has a Hamiltonian cycle 𝑊.

• Then, 𝐺’ has also the Hamiltonian cycle 𝑊 since it has the same vertex

set with 𝐺 while 𝐸 ⊆ 𝐸’.

• Since all the vertices of 𝑊 in 𝐺’ have weight 1 it follows that cycle

𝑊 has weight in 𝐺’ equal to 𝑘 = |𝑉|.
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2. The graph 𝐺 has HAMC 𝑖𝑓𝑓 the produce graph 𝐺’ has HAMC ≤ 𝐾=|𝑉|

(⟸)

• Let 𝐺 has a Hamiltonian cycle 𝑊 with weight ≤ 𝑘 = |𝑉|.

• Then, the cycle 𝑊 can not include any of the edges of 𝐸’ that do not

belong to 𝐸, as they have weight 2 and hence the |𝑉| edges of 𝑊 can

not have total weight ≤ |𝑉|.

• Hence, the initial graph 𝐺 has a Hamiltonian cycle 𝑊
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2. The correctness of  the reduction HAMC ≤ TSP has been proven.

• Now it lefts to prove that the complexity of the reduction is polynomial.
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2. The correctness of  the reduction HAMC ≤ TSP has been proven.

• Now it lefts to prove that the complexity of the reduction is polynomial.

• Indeed the graph 𝐺’ can be produced from 𝐺 in polynomial time!

• Hence, since

o 𝑇𝑆𝑃 ∈ 𝑁𝑃 and

o 𝐻𝐴𝑀𝐶 ≤ 𝑇𝑆𝑃

⟹ 𝑇𝑆𝑃 ∈ 𝑁𝑃 − 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒
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• Decision TSP: Given a complete undirected graph 𝐺, with weighted edges

𝑤𝑖𝑗 ∈ 𝑁, ∀ 𝑖, 𝑗 ∈ 𝐸 𝐺 and a number 𝑘 ∈ 𝑁, find if there exists a

Hamiltonian cycle 𝑊 in 𝐺, such that the sum of the weights on the edges to

be ≤ 𝑘 ?

 

i,j ∈W

𝑤𝑖𝑗 ≤ 𝑘

• Optimization TSP: Given a complete undirected graph 𝐺, with weighted

edges 𝑤𝑖𝑗 ∈ 𝑁, ∀ 𝑖, 𝑗 ∈ 𝐸(𝐺), find a Hamiltonian cycle 𝑊 in 𝐺, such

that the sum of the weights on the edges to be minimum?

min  

i,j ∈W

𝑤𝑖𝑗
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• Decision TSP: Given a complete undirected graph 𝐺, with weighted edges

𝑤𝑖𝑗 ∈ 𝑁, ∀ 𝑖, 𝑗 ∈ 𝐸 𝐺 and a number 𝑘 ∈ 𝑁, find if there exists a

Hamiltonian cycle 𝑊 in 𝐺, such that the sum of the weights on the edges to

be ≤ 𝑘 ?

 

i,j ∈W

𝑤𝑖𝑗 ≤ 𝑘

• The Traveling Salesman Problem has been proven to be NP-Complete.

• There does not exist an algorithm that solves the Decision TSP in

polynomial time, and hence neither for the Optimization TSP.
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• Decision TSP: Given a complete undirected graph 𝐺, with weighted edges

𝑤𝑖𝑗 ∈ 𝑁, ∀ 𝑖, 𝑗 ∈ 𝐸 𝐺 and a number 𝑘 ∈ 𝑁, find if there exists a

Hamiltonian cycle 𝑊 in 𝐺, such that the sum of the weights on the edges to

be ≤ 𝑘 ?

 

i,j ∈W

𝑤𝑖𝑗 ≤ 𝑘

• The Traveling Salesman Problem has been proven to be NP-complete.

• There does not exist an algorithm that solves the Decision TSP in

polynomial time, and hence neither for the Optimization TSP.

• Why?
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• Decision TSP: Given a complete undirected graph 𝐺, with weighted edges

𝑤𝑖𝑗 ∈ 𝑁, ∀ 𝑖, 𝑗 ∈ 𝐸 𝐺 and a number 𝑘 ∈ 𝑁, find if there exists a

Hamiltonian cycle 𝑊 in 𝐺, such that the sum of the weights on the edges to

be ≤ 𝑘 ?

 

i,j ∈W

𝑤𝑖𝑗 ≤ 𝑘

• The Traveling Salesman Problem has been proven to be NP-complete.

• There does not exist an algorithm that solves the Decision TSP in

polynomial time, and hence neither for the Optimization TSP.

• If we design an algorithm that solves the Decision TSP in

polynomial time, would it solve the Optimization TSP in polynomial time

too?
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• Decision TSP: Given a complete undirected graph 𝐺, with weighted edges

𝑤𝑖𝑗 ∈ 𝑁, ∀ 𝑖, 𝑗 ∈ 𝐸 𝐺 and a number 𝑘 ∈ 𝑁, find if there exists a

Hamiltonian cycle 𝑊 in 𝐺, such that the sum of the weights on the edges to

be ≤ 𝑘 ?

 

i,j ∈W

𝑤𝑖𝑗 ≤ 𝑘

• Having an algorithm that solves the Decision TSP in polynomial time, would

it solve the Optimization TSP in polynomial time too?

• If we had an algorithm let 𝐴𝑑 for the Decision TSP problem, then it would

return “YES” if there would exist Hamiltonian cycle of weight ≤ 𝑘, or it

would return “NO” otherwise.
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• Decision TSP: Given a complete undirected graph 𝐺, with weighted edges

𝑤𝑖𝑗 ∈ 𝑁, ∀ 𝑖, 𝑗 ∈ 𝐸 𝐺 and a number 𝑘 ∈ 𝑁, find if there exists a

Hamiltonian cycle 𝑊 in 𝐺, such that the sum of the weights on the edges to

be ≤ 𝑘 ?

 

i,j ∈W

𝑤𝑖𝑗 ≤ 𝑘

• Having an algorithm that solves the Decision TSP in polynomial time, would

it solve the Optimization TSP in polynomial time too?

• Let M the maximum weight of the edges of graph 𝐺, we search the value of

𝑘 in the range [0, 𝑛𝑀] and apply the algorithm 𝐴𝑑
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• Decision TSP: Given a complete undirected graph 𝐺, with weighted edges

𝑤𝑖𝑗 ∈ 𝑁, ∀ 𝑖, 𝑗 ∈ 𝐸 𝐺 and a number 𝑘 ∈ 𝑁, find if there exists a

Hamiltonian cycle 𝑊 in 𝐺, such that the sum of the weights on the edges to

be ≤ 𝑘 ?

 

i,j ∈W

𝑤𝑖𝑗 ≤ 𝑘

• Having an algorithm that solves the Decision TSP in polynomial time, would

it solve the Optimization TSP in polynomial time too?

• Algorithm 𝐴𝑜𝑝𝑡 (Linear Search)

[𝟎, 1, 2, 3, … ,𝑚 − 1,𝑚 ,𝑚 + 1, … , 𝑛𝑀 − 1, 𝑛𝑀]

• 𝑘 = 0, If 𝐴𝑑 returns “NO”, then 𝑘 + +
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• Decision TSP: Given a complete undirected graph 𝐺, with weighted edges

𝑤𝑖𝑗 ∈ 𝑁, ∀ 𝑖, 𝑗 ∈ 𝐸 𝐺 and a number 𝑘 ∈ 𝑁, find if there exists a

Hamiltonian cycle 𝑊 in 𝐺, such that the sum of the weights on the edges to

be ≤ 𝑘 ?

 

i,j ∈W

𝑤𝑖𝑗 ≤ 𝑘

• Having an algorithm that solves the Decision TSP in polynomial time, would

it solve the Optimization TSP in polynomial time too?

• Algorithm 𝐴𝑜𝑝𝑡 (Linear Search)

[0, 𝟏, 2, 3, … ,𝑚 − 1,𝑚 ,𝑚 + 1, … , 𝑛𝑀 − 1, 𝑛𝑀]

• 𝑘 = 1, If 𝐴𝑑 returns “NO”, then 𝑘 + +
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• Decision TSP: Given a complete undirected graph 𝐺, with weighted edges

𝑤𝑖𝑗 ∈ 𝑁, ∀ 𝑖, 𝑗 ∈ 𝐸 𝐺 and a number 𝑘 ∈ 𝑁, find if there exists a

Hamiltonian cycle 𝑊 in 𝐺, such that the sum of the weights on the edges to

be ≤ 𝑘 ?

 

i,j ∈W

𝑤𝑖𝑗 ≤ 𝑘

• Having an algorithm that solves the Decision TSP in polynomial time, would

it solve the Optimization TSP in polynomial time too?

• Algorithm 𝐴𝑜𝑝𝑡 (Linear Search)

[0, 1, 𝟐, 3, … ,𝑚 − 1,𝑚 ,𝑚 + 1, … , 𝑛𝑀 − 1, 𝑛𝑀]

• 𝑘 = 2, If 𝐴𝑑 returns “NO”, then 𝑘 + +
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• Decision TSP: Given a complete undirected graph 𝐺, with weighted edges

𝑤𝑖𝑗 ∈ 𝑁, ∀ 𝑖, 𝑗 ∈ 𝐸 𝐺 and a number 𝑘 ∈ 𝑁, find if there exists a

Hamiltonian cycle 𝑊 in 𝐺, such that the sum of the weights on the edges to

be ≤ 𝑘 ?

 

i,j ∈W

𝑤𝑖𝑗 ≤ 𝑘

• Having an algorithm that solves the Decision TSP in polynomial time, would

it solve the Optimization TSP in polynomial time too?

• Algorithm 𝐴𝑜𝑝𝑡 (Linear Search)

[0, 1, 2, 3, … ,𝒎 − 𝟏,𝑚 ,𝑚 + 1,… , 𝑛𝑀 − 1, 𝑛𝑀]

• 𝑘 = 𝑚 − 1, If 𝐴𝑑 returns “NO”, then 𝑘 + +
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• Decision TSP: Given a complete undirected graph 𝐺, with weighted edges

𝑤𝑖𝑗 ∈ 𝑁, ∀ 𝑖, 𝑗 ∈ 𝐸 𝐺 and a number 𝑘 ∈ 𝑁, find if there exists a

Hamiltonian cycle 𝑊 in 𝐺, such that the sum of the weights on the edges to

be ≤ 𝑘 ?

 

i,j ∈W

𝑤𝑖𝑗 ≤ 𝑘

• Having an algorithm that solves the Decision TSP in polynomial time, would

it solve the Optimization TSP in polynomial time too?

• Algorithm 𝐴𝑜𝑝𝑡 (Linear Search)

[0, 1, 2, 3, … ,𝑚 − 1,𝒎 ,𝑚 + 1,… , 𝑛𝑀 − 1, 𝑛𝑀]

• 𝑘 = 𝑚, If 𝐴𝑑 returns “YES”, then 𝑒𝑥𝑖𝑡
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• Decision TSP: Given a complete undirected graph 𝐺, with weighted edges

𝑤𝑖𝑗 ∈ 𝑁, ∀ 𝑖, 𝑗 ∈ 𝐸 𝐺 and a number 𝑘 ∈ 𝑁, find if there exists a

Hamiltonian cycle 𝑊 in 𝐺, such that the sum of the weights on the edges to

be ≤ 𝑘 ?

 

i,j ∈W

𝑤𝑖𝑗 ≤ 𝑘

• Having an algorithm that solves the Decision TSP in polynomial time, would

it solve the Optimization TSP in polynomial time too?

• Algorithm 𝐴𝑜𝑝𝑡 (Linear Search)

[0, 1, 2, 3, … ,𝑚 − 1,𝑚 ,𝑚 + 1,… , 𝑛𝑀 − 1, 𝑛𝑀]

• Algorithm 𝐴𝑑 will be executed at most 𝑂(𝑛𝑀) times (worst case)

Hence, if  𝐴𝑑 is polynomial then 𝐴𝑜𝑝𝑡 is polynomial too.
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• Decision TSP: Given a complete undirected graph 𝐺, with weighted edges

𝑤𝑖𝑗 ∈ 𝑁, ∀ 𝑖, 𝑗 ∈ 𝐸 𝐺 and a number 𝑘 ∈ 𝑁, find if there exists a

Hamiltonian cycle 𝑊 in 𝐺, such that the sum of the weights on the edges to

be ≤ 𝑘 ?

 

i,j ∈W

𝑤𝑖𝑗 ≤ 𝑘

• Having an algorithm that solves the Decision TSP in polynomial time, would

it solve the Optimization TSP in polynomial time too?

• Algorithm 𝐴𝑜𝑝𝑡 (Binary Search)

[𝟎, 1, 2, 3, … ,𝑚 − 1,𝑚 ,𝑚 + 1,… , 𝑛𝑀 − 1, 𝒏𝑴]

• 𝐾 = (𝑟𝑖𝑔ℎ𝑡 − 𝑙𝑒𝑓𝑡)/2 , …
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• Decision TSP: Given a complete undirected graph 𝐺, with weighted edges

𝑤𝑖𝑗 ∈ 𝑁, ∀ 𝑖, 𝑗 ∈ 𝐸 𝐺 and a number 𝑘 ∈ 𝑁, find if there exists a

Hamiltonian cycle 𝑊 in 𝐺, such that the sum of the weights on the edges to

be ≤ 𝑘 ?

 

i,j ∈W

𝑤𝑖𝑗 ≤ 𝑘

• Having an algorithm that solves the Decision TSP in polynomial time, would

it solve the Optimization TSP in polynomial time too?

• Algorithm 𝐴𝑜𝑝𝑡 (Binary Search)

[𝟎, 1, 2, 3, … ,𝑚 − 1,𝑚 ,𝑚 + 1,… , 𝑛𝑀 − 1, 𝒏𝑴]

• 𝐾 = (𝑟𝑖𝑔ℎ𝑡 − 𝑙𝑒𝑓𝑡)/2 , … Algorithm 𝐴𝑑 in worst cast will be executed 

𝑂(𝑙𝑜𝑔𝑛𝑀) times, and hence if  𝐴𝑑 is polynomial, then 𝐴𝑜𝑝𝑡 will be 

polynomial too.



PATHS AND CYCLES …

 Decision TSP & Optimization TSP

235

• Decision TSP: Given a complete undirected graph 𝐺, with weighted edges

𝑤𝑖𝑗 ∈ 𝑁, ∀ 𝑖, 𝑗 ∈ 𝐸 𝐺 and a number 𝑘 ∈ 𝑁, find if there exists a

Hamiltonian cycle 𝑊 in 𝐺, such that the sum of the weights on the edges to

be ≤ 𝑘 ?

 

i,j ∈W

𝑤𝑖𝑗 ≤ 𝑘

• The performance of the Optimization TSP is close enough to the

performance of the Decision TSP.
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• SAT Problem: We are given a Boolean formula in conjunctive form:

(𝒙 ∨  𝒚 ∨ 𝒛 ∨  𝒘) ∧ (𝒙 ∨  𝒚) ∧ (𝒛 ∨  𝒙 ∨  𝒘 ∨ 𝒑 ∨ 𝒚) ∧ (𝒙 ∨  𝒚 ∨ 𝒛)

and we need to find a satisfying truth assignment (or to claim that there does

not exist any)

• 3SAT Problem:

(𝒙 ∨  𝒚 ∨ 𝒛) ∧ (𝒘 ∨  𝒚) ∧ (𝒚 ∨  𝒛) ∧ ( 𝒑 ∨ 𝒙) ∧ ( 𝒙 ∨  𝒚 ∨ 𝒛)
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• SAT Problem: We are given a Boolean formula in conjunctive form:

(𝒙 ∨  𝒚 ∨ 𝒛 ∨  𝒘) ∧ (𝒙 ∨  𝒚) ∧ (𝒛 ∨  𝒙 ∨  𝒘 ∨ 𝒑 ∨ 𝒚) ∧ (𝒙 ∨  𝒚 ∨ 𝒛)

and we need to find a satisfying truth assignment (or to claim that there does

not exist any)

• 3SAT Problem:

( 𝒙 ∨ 𝒚 ∨  𝒛) ∧ (𝒙 ∨  𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛) ∧ ( 𝒙 ∨  𝒚)

• Independent-Set: We are given a graph of n vertices and an integer k.

We are asked to find an I.S. of k

vertices, where each pair of vertices in

the set are disjoint, or to point out that

there does not exist such a set.

3SAT ≤ IS
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• 3SAT Problem:

( 𝒙 ∨ 𝒚 ∨  𝒛) ∧ (𝒙 ∨  𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛) ∧ ( 𝒙 ∨  𝒚)

• Independent-Set:

• Correlation between Boolean Logic and Graphs

• In a satisfying truth assignment, an element from each term should

be true, and hence since 𝑥 could be chosen to be true in a term we

are not allowed to set  𝑥 to be true in another term.
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• 3SAT Problem:

( 𝒙 ∨ 𝒚 ∨  𝒛) ∧ (𝒙 ∨  𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛) ∧ ( 𝒙 ∨  𝒚)

• Independent-Set:

• Correlation between Boolean Logic and Graphs
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• 3SAT Problem and Independent Set:

( 𝒙 ∨ 𝒚 ∨  𝒛) ∧ (𝒙 ∨  𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛) ∧ ( 𝒙 ∨  𝒚)

• In the produced graph, let 𝐺, each Independent Set contains at most

one element from each triangle/term.
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• 3SAT Problem and Independent Set:

( 𝒙 ∨ 𝒚 ∨  𝒛) ∧ (𝒙 ∨  𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛) ∧ ( 𝒙 ∨  𝒚)

• In the produced graph, let 𝐺, each Independent Set contains at most

one element from each triangle/term.
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• 3SAT Problem and Independent Set:

( 𝒙 ∨ 𝒚 ∨  𝒛) ∧ (𝒙 ∨  𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛) ∧ ( 𝒙 ∨  𝒚)

• In the produced graph, let 𝐺, each Independent Set contains at most

one element from each triangle/term.
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• 3SAT Problem and Independent Set:

( 𝒙 ∨ 𝒚 ∨  𝒛) ∧ (𝒙 ∨  𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛) ∧ ( 𝒙 ∨  𝒚)

• In the produced graph, let 𝐺, each Independent Set contains at most

one element from each triangle/term.
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• 3SAT Problem and Independent Set:

( 𝒙 ∨ 𝒚 ∨  𝒛) ∧ (𝒙 ∨  𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛) ∧ ( 𝒙 ∨  𝒚)

• In the produced graph, let 𝐺, each Independent Set contains at most

one element from each triangle/term.
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• 3SAT Problem and Independent Set:

( 𝒙 ∨ 𝒚 ∨  𝒛) ∧ (𝒙 ∨  𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛) ∧ ( 𝒙 ∨  𝒚)

• In the produced graph, let 𝐺, each Independent Set contains at most

one element from each triangle/term.
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• 3SAT Problem and Independent Set:

( 𝒙 ∨ 𝒚 ∨  𝒛) ∧ (𝒙 ∨  𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛) ∧ ( 𝒙 ∨  𝒚)

• In the produced graph, let 𝐺, each Independent Set contains at most

one element from each triangle/term.

• In order to set an option from each triangle/term, we set 𝑘 =the

cardinality of the terms.

• It is needed a method that would deter us from selecting opposite

elements, i.e., 𝑥 and  𝑥.
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• 3SAT Problem and Independent Set:

( 𝒙 ∨ 𝒚 ∨  𝒛) ∧ (𝒙 ∨  𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛) ∧ ( 𝒙 ∨  𝒚)
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• 3SAT Problem and Independent Set:

( 𝒙 ∨ 𝒚 ∨  𝒛) ∧ (𝒙 ∨  𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛) ∧ ( 𝒙 ∨  𝒚)
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• 3SAT Problem and Independent Set:

( 𝒙 ∨ 𝒚 ∨  𝒛) ∧ (𝒙 ∨  𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛) ∧ ( 𝒙 ∨  𝒚)

Given an instance 𝐼 of problem 3SAT, construct an instance (𝐺, 𝑘) of

the problem Independent Set.
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• 3SAT Problem and Independent Set:

( 𝒙 ∨ 𝒚 ∨  𝒛) ∧ (𝒙 ∨  𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛) ∧ ( 𝒙 ∨  𝒚)

𝑥 = 𝑓𝑎𝑙𝑠𝑒, 𝑦 = 𝑡𝑟𝑢𝑒, 𝑧 = 𝑡𝑟𝑢𝑒

Given an instance 𝐼 of problem 3SAT, construct an instance (𝐺, 𝑘) of

the problem Independent Set.
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• 3SAT Problem and Independent Set:

( 𝒙 ∨ 𝒚 ∨  𝒛) ∧ (𝒙 ∨  𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛) ∧ ( 𝒙 ∨  𝒚)

𝑥 = 𝑓𝑎𝑙𝑠𝑒, 𝑦 = 𝑓𝑎𝑙𝑠𝑒, 𝑧 = 𝑡𝑟𝑢𝑒

Given an instance 𝐼 of problem 3SAT, construct an instance (𝐺, 𝑘) of

the problem Independent Set.
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• 3SAT Problem and Independent Set:

( 𝒙 ∨ 𝒚 ∨  𝒛) ∧ (𝒙 ∨  𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛) ∧ ( 𝒙 ∨  𝒚)

𝑥 = 𝑓𝑎𝑙𝑠𝑒, 𝑦 = 𝑓𝑎𝑙𝑠𝑒, 𝑧 = 𝑡𝑟𝑢𝑒

Given an instance 𝐼 of problem 3SAT, construct an instance (𝐺, 𝑘) of

the problem Independent Set.

Polynomial Time
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• 3SAT Problem and Independent Set:

We should prove that 3SAT ⇔ IS

( 𝒙 ∨ 𝒚 ∨  𝒛) ∧ (𝒙 ∨  𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛) ∧ ( 𝒙 ∨  𝒚)

• (⟸) Given an Independent Set 𝑆 with 𝑘 vertices in the graph 𝐺, we can

always get a satisfying truth assignment in 𝐼.

• (⟹) If the graph 𝐺 has no Independent Set S of size 𝑘, then the logical

formula 𝐼 is not satisfiable.
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• 3SAT Problem and Independent Set:

We should prove that 3SAT ⇔ IS

( 𝒙 ∨ 𝒚 ∨  𝒛) ∧ (𝒙 ∨  𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛) ∧ ( 𝒙 ∨  𝒚)

• (⟸) Given an Independent Set 𝑆 with 𝑘 vertices in the graph 𝐺, we can

always get a satisfying truth assignment in 𝐼.

For each variable 𝑥, set 𝑆 contains no vertices with labels 𝑥 and  𝑥. We assign

𝑥 = 𝑡𝑟𝑢𝑒 if s contains vertex with label 𝑥 and 𝑥 = 𝑓𝑎𝑙𝑠𝑒 if 𝑆 contains

vertex with label  𝑥. Since |𝑆| = 𝑘, it should contain a vertex per term. Such

an assignment satisfies all terms.
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• 3SAT Problem and Independent Set:

We should prove that 3SAT ⇔ IS

( 𝒙 ∨ 𝒚 ∨  𝒛) ∧ (𝒙 ∨  𝒚 ∨ 𝒛) ∧ (𝒙 ∨ 𝒚 ∨ 𝒛) ∧ ( 𝒙 ∨  𝒚)

• (⟹) If the graph 𝐺 has no Independent Set S of size 𝑘, then the logical

formula 𝐼 is not satisfiable.

It is adequate to prove that if the logical formula 𝐼 has a satisfying truth

assignment, then 𝐺 has an Independent Set 𝑆 of size 𝑘. Hence, for each

term of the 3SAT we select an element which its value in the satisfying truth

assignment is true and add the corresponding vertex in 𝑆 .
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• Heuristic Sub-Optimal Solutions:

1. Greedy TSP with DFS

2. Greedy TSP with Bilateral Path Extension (Nearest Insertion)

3. Greedy TSP with Closest Insertion (Cheapest Insertion)

4. TSP with Minimum Spanning Tree

5. TSP with Vertex Substitution
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• Heuristic Sub-Optimal Solutions:

1. Greedy TSP with DFS

2. Greedy TSP with Bilateral Path Extension (Nearest Insertion)

3. Greedy TSP with Closest Insertion (Cheapest Insertion)

4. TSP with Minimum Spanning Tree

5. TSP with Vertex Substitution
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• Heuristic Sub-Optimal Solutions:

Greedy TSP with DFS

1) Select a random vertex 𝑣0
2) set 𝑖 ← 1 and 𝑙(𝑣) ← 0
3) while (∃ unmarked vertices)

4) select the edge with the less weight, from the edges that

connect vertex 𝑣 with an unmarked vertex 𝑤.

5) set 𝑙(𝑤) ← 𝑖 and 𝑣 ← 𝑤.
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• Heuristic Sub-Optimal Solutions:

1. Greedy TSP with DFS

2. Greedy TSP with Bilateral Path Extension (Nearest Insertion)

3. Greedy TSP with Closest Insertion (Cheapest Insertion)

4. TSP with Minimum Spanning Tree

5. TSP with Vertex Substitution
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• Heuristic Sub-Optimal Solutions:

Greedy TSP with Bilateral Path Extension (Nearest Insertion)

1) Set 𝑖 ← 1.

2) Select a random peak 𝑣0 and consider the path 𝑃𝑖 = 𝑣0
3) If (𝑖 = 𝑛)

𝐶 = 𝑃𝑛 is a Hamilton circle,

4) Else

select the lightest edge e adjacent to one of the two terminal vertices

of 𝑃𝑖 such that no cycle with the peaks of 𝑃𝑖 to be created.

5) Construct the path 𝑃𝑖+1 = (𝑃𝑖 ∪ 𝑒)

6) Set 𝑖 ← 𝑖 + 1.

7) Goto step 3
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• Heuristic Sub-Optimal Solutions:

Greedy TSP with Bilateral Path Extension (Nearest Insertion)

Path Weight

3-6 2

3-6-5 38

3-6-5-4 59

3-6-5-4-2 129

3-6-5-4-2-1 142

3-6-5-4-2-1-3 193
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• Heuristic Sub-Optimal Solutions:

1. Greedy TSP with DFS

2. Greedy TSP with Bilateral Path Extension (Nearest Insertion)

3. Greedy TSP with Closest Insertion (Cheapest Insertion)

4. TSP with Minimum Spanning Tree

5. TSP with Vertex Substitution
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• Heuristic Sub-Optimal Solutions:

Greedy TSP with Closest Insertion (Cheapest Insertion)

1) Set 𝑖 ← 1.

2) Select a random peak 𝑣0 and consider the path 𝐶𝑖 = 𝑣0
3) If (𝑖 = 𝑛)

𝐶 = 𝐶𝑛 is a Hamilton circle

4) Else

search for a vertex 𝑣𝑖 that ∉ in the circle 𝐶𝑖 and are closest to a pair

in sequential vertices 𝑣𝑖 , 𝑣𝑖+1 ∈ 𝐶𝑖 .
5) Construct cycle 𝐶𝑖+1 inserting the vertex 𝑣𝑖 between 𝑣𝑖 and 𝑣𝑖+1.
6) Set 𝑖 ← 𝑖 + 1.

7) Goto step 3
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• Heuristic Sub-Optimal Solutions:

Greedy TSP with Closest Insertion (Cheapest Insertion)

Path Weight

3 …

3-6-3 …

3-6-5-3 …

3-6-5-4-3 …

3-6-1-5-4-3 …

3-6-2-1-5-4-3 192
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• Heuristic Sub-Optimal Solutions:

1. Greedy TSP with DFS

2. Greedy TSP with Bilateral Path Extension (Nearest Insertion)

3. Greedy TSP with Closest Insertion (Cheapest Insertion)

4. TSP with Minimum Spanning Tree

5. TSP with Vertex Substitution
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• Heuristic Sub-Optimal Solutions:

TSP with Minimum Spanning Tree

1) Find a minimum spanning tree 𝑇
2) Perform a Depth First Search

3) If 𝑣𝑖 , 𝑣2, … , 𝑣𝑝 is the sequence of visiting the vertices of 𝑇 from step 2,

then the Hamiltonian cycle is 𝑣𝑖 , 𝑣2, … , 𝑣𝑝, 𝑣1.
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• Heuristic Sub-Optimal Solutions:

TSP with Minimum Spanning Tree

1) Find a minimum spanning tree 𝑇
2) Perform a Depth First Search

3) If 𝑣𝑖 , 𝑣2, … , 𝑣𝑝 is the sequence of visiting the vertices of 𝑇 from step 2,

then the Hamiltonian cycle is 𝑣𝑖 , 𝑣2, … , 𝑣𝑝, 𝑣1.
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• Heuristic Sub-Optimal Solutions:

TSP with Minimum Spanning Tree

1) Find a minimum spanning tree 𝑇
2) Perform a Depth First Search

3) If 𝑣𝑖 , 𝑣2, … , 𝑣𝑝 is the sequence of visiting the vertices of 𝑇 from step 2,

then the Hamiltonian cycle is 𝑣𝑖 , 𝑣2, … , 𝑣𝑝, 𝑣1.

Path Weight

(3,1,2,5,4,6,3) 212

(1,2,3,5,4,6,1) 237

… …
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• Heuristic Sub-Optimal Solutions:

1. Greedy TSP with DFS

2. Greedy TSP with Bilateral Path Extension (Nearest Insertion)

3. Greedy TSP with Closest Insertion (Cheapest Insertion)

4. TSP with Minimum Spanning Tree

5. TSP with Vertex Substitution
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• Heuristic Sub-Optimal Solutions:

TSP with Vertex Substitution

1) Consider a Hamiltonian cycle 𝐶 = 𝑣1, 𝑣2, … , 𝑣𝑛, 𝑣1

2) ∀ 𝑖, 𝑗, ∶ 1 < 𝑖 + 1 < 𝑗 < 𝑛, obtain a new Hamiltonian cycle

𝐶𝑖,𝑗 = 𝑣1, 𝑣2, … 𝑣𝑖 , 𝑣𝑗 , 𝑣𝑗−1, … , 𝑣𝑖+1, 𝑣𝑗+1, 𝑣𝑗+2, … , 𝑣𝑛, 𝑣1 deleting the edges 

(𝑣𝑖 , 𝑣𝑖+1) 𝑎𝑛𝑑 (𝑣𝑗, 𝑣𝑗+1) and adding the edges (𝑣𝑖 , 𝑣𝑗) 𝑎𝑛𝑑 (𝑣𝑖+1, 𝑣𝑗+1).

3) If (for some 𝑖, 𝑗 occurs 𝑤(𝑣𝑖 , 𝑣𝑗) + 𝑤(𝑣𝑖+1, 𝑣𝑗+1) < 𝑤(𝑣𝑖 , 𝑣𝑖+1) + 𝑤(𝑣𝑗, 𝑣𝑗+1) )

set 𝐶 = 𝐶𝑖,𝑗 .

4) Goto step 2.
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• Heuristic Sub-Optimal Solutions:

TSP with Vertex Substitution

1) Consider a Hamiltonian cycle 𝐶 = 𝑣1, 𝑣2, … , 𝑣𝑛, 𝑣1

2) ∀ 𝑖, 𝑗, ∶ 1 < 𝑖 + 1 < 𝑗 < 𝑛, obtain a new Hamiltonian cycle

𝐶𝑖,𝑗 = 𝑣1, 𝑣2, … 𝑣𝑖 , 𝑣𝑗 , 𝑣𝑗−1, … , 𝑣𝑖+1, 𝑣𝑗+1, 𝑣𝑗+2, … , 𝑣𝑛, 𝑣1 deleting the edges 

(𝑣𝑖 , 𝑣𝑖+1) 𝑎𝑛𝑑 (𝑣𝑗, 𝑣𝑗+1) and adding the edges (𝑣𝑖 , 𝑣𝑗) 𝑎𝑛𝑑 (𝑣𝑖+1, 𝑣𝑗+1).

3) If (for some 𝑖, 𝑗 occurs 𝑤(𝑣𝑖 , 𝑣𝑗) + 𝑤(𝑣𝑖+1, 𝑣𝑗+1) < 𝑤(𝑣𝑖 , 𝑣𝑖+1) + 𝑤(𝑣𝑗, 𝑣𝑗+1) )

set 𝐶 = 𝐶𝑖,𝑗 .

4) Goto step 2.

Path Weight

(3,4,5,6,1,2,3) 237

(3,6,5,4,1,2,3) 210

(3,6,5,4,2,1,3) 193

(3,6,1,2,4,5,3) 192
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• Vertices are points of the plane with integer coordinates, while the edges join

vertices at a distance of 1

• In infinite graphs there is no Eulerian circuit or Hamiltonian circle, but there

are corresponding paths

• An “one-way” Eulerian / Hamiltonian path is the path that starts from a

vertex and expands infinitely (space filling curve)

Peano/z-order Hilbert 



PATHS AND CYCLES …

 Magic Squares

273

• The rows, columns and diagonals have an equal sum

• Magic squares algorithms (odd order):

o Bachet method (with rhombus)
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• The rows, columns and diagonals have an equal sum

• Magic squares algorithms (odd order):

o Bachet method (with rhombus)

o By tricking the three random numbers (eg 3,2,5)

o Replacing unnecessary numbers 3-17 in positions 1-9

o Adding the same number to each position
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• The rows, columns and diagonals have an equal sum

• Magic is called the graph where the sum of their inscriptions of edges that

fall on all nodes is equal

• Theorem: if a bipartite graph can be decomposed into 2

Hamiltonian circles, then the graph is magical

• Antimagic is called the graph where the sums of inscriptions of the edges

of all vertices is not equal.

• Number of magic objects (squares, dominoes, polygons, etc)


